|
|
|
import datetime |
|
import logging |
|
import os |
|
import platform |
|
import warnings |
|
|
|
import cv2 |
|
import torch.multiprocessing as mp |
|
from mmengine import DefaultScope |
|
from mmengine.logging import print_log |
|
from mmengine.utils import digit_version |
|
|
|
|
|
def setup_cache_size_limit_of_dynamo(): |
|
"""Setup cache size limit of dynamo. |
|
|
|
Note: Due to the dynamic shape of the loss calculation and |
|
post-processing parts in the object detection algorithm, these |
|
functions must be compiled every time they are run. |
|
Setting a large value for torch._dynamo.config.cache_size_limit |
|
may result in repeated compilation, which can slow down training |
|
and testing speed. Therefore, we need to set the default value of |
|
cache_size_limit smaller. An empirical value is 4. |
|
""" |
|
|
|
import torch |
|
if digit_version(torch.__version__) >= digit_version('2.0.0'): |
|
if 'DYNAMO_CACHE_SIZE_LIMIT' in os.environ: |
|
import torch._dynamo |
|
cache_size_limit = int(os.environ['DYNAMO_CACHE_SIZE_LIMIT']) |
|
torch._dynamo.config.cache_size_limit = cache_size_limit |
|
print_log( |
|
f'torch._dynamo.config.cache_size_limit is force ' |
|
f'set to {cache_size_limit}.', |
|
logger='current', |
|
level=logging.WARNING) |
|
|
|
|
|
def setup_multi_processes(cfg): |
|
"""Setup multi-processing environment variables.""" |
|
|
|
if platform.system() != 'Windows': |
|
mp_start_method = cfg.get('mp_start_method', 'fork') |
|
current_method = mp.get_start_method(allow_none=True) |
|
if current_method is not None and current_method != mp_start_method: |
|
warnings.warn( |
|
f'Multi-processing start method `{mp_start_method}` is ' |
|
f'different from the previous setting `{current_method}`.' |
|
f'It will be force set to `{mp_start_method}`. You can change ' |
|
f'this behavior by changing `mp_start_method` in your config.') |
|
mp.set_start_method(mp_start_method, force=True) |
|
|
|
|
|
opencv_num_threads = cfg.get('opencv_num_threads', 0) |
|
cv2.setNumThreads(opencv_num_threads) |
|
|
|
|
|
|
|
workers_per_gpu = cfg.data.get('workers_per_gpu', 1) |
|
if 'train_dataloader' in cfg.data: |
|
workers_per_gpu = \ |
|
max(cfg.data.train_dataloader.get('workers_per_gpu', 1), |
|
workers_per_gpu) |
|
|
|
if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1: |
|
omp_num_threads = 1 |
|
warnings.warn( |
|
f'Setting OMP_NUM_THREADS environment variable for each process ' |
|
f'to be {omp_num_threads} in default, to avoid your system being ' |
|
f'overloaded, please further tune the variable for optimal ' |
|
f'performance in your application as needed.') |
|
os.environ['OMP_NUM_THREADS'] = str(omp_num_threads) |
|
|
|
|
|
if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1: |
|
mkl_num_threads = 1 |
|
warnings.warn( |
|
f'Setting MKL_NUM_THREADS environment variable for each process ' |
|
f'to be {mkl_num_threads} in default, to avoid your system being ' |
|
f'overloaded, please further tune the variable for optimal ' |
|
f'performance in your application as needed.') |
|
os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads) |
|
|
|
|
|
def register_all_modules(init_default_scope: bool = True) -> None: |
|
"""Register all modules in mmdet into the registries. |
|
|
|
Args: |
|
init_default_scope (bool): Whether initialize the mmdet default scope. |
|
When `init_default_scope=True`, the global default scope will be |
|
set to `mmdet`, and all registries will build modules from mmdet's |
|
registry node. To understand more about the registry, please refer |
|
to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md |
|
Defaults to True. |
|
""" |
|
import mmdet.datasets |
|
import mmdet.engine |
|
import mmdet.evaluation |
|
import mmdet.models |
|
import mmdet.visualization |
|
|
|
if init_default_scope: |
|
never_created = DefaultScope.get_current_instance() is None \ |
|
or not DefaultScope.check_instance_created('mmdet') |
|
if never_created: |
|
DefaultScope.get_instance('mmdet', scope_name='mmdet') |
|
return |
|
current_scope = DefaultScope.get_current_instance() |
|
if current_scope.scope_name != 'mmdet': |
|
warnings.warn('The current default scope ' |
|
f'"{current_scope.scope_name}" is not "mmdet", ' |
|
'`register_all_modules` will force the current' |
|
'default scope to be "mmdet". If this is not ' |
|
'expected, please set `init_default_scope=False`.') |
|
|
|
new_instance_name = f'mmdet-{datetime.datetime.now()}' |
|
DefaultScope.get_instance(new_instance_name, scope_name='mmdet') |
|
|