|
|
|
import numpy as np |
|
import pycocotools.mask as mask_util |
|
import torch |
|
from mmengine.utils import slice_list |
|
|
|
|
|
def split_combined_polys(polys, poly_lens, polys_per_mask): |
|
"""Split the combined 1-D polys into masks. |
|
|
|
A mask is represented as a list of polys, and a poly is represented as |
|
a 1-D array. In dataset, all masks are concatenated into a single 1-D |
|
tensor. Here we need to split the tensor into original representations. |
|
|
|
Args: |
|
polys (list): a list (length = image num) of 1-D tensors |
|
poly_lens (list): a list (length = image num) of poly length |
|
polys_per_mask (list): a list (length = image num) of poly number |
|
of each mask |
|
|
|
Returns: |
|
list: a list (length = image num) of list (length = mask num) of \ |
|
list (length = poly num) of numpy array. |
|
""" |
|
mask_polys_list = [] |
|
for img_id in range(len(polys)): |
|
polys_single = polys[img_id] |
|
polys_lens_single = poly_lens[img_id].tolist() |
|
polys_per_mask_single = polys_per_mask[img_id].tolist() |
|
|
|
split_polys = slice_list(polys_single, polys_lens_single) |
|
mask_polys = slice_list(split_polys, polys_per_mask_single) |
|
mask_polys_list.append(mask_polys) |
|
return mask_polys_list |
|
|
|
|
|
|
|
def encode_mask_results(mask_results): |
|
"""Encode bitmap mask to RLE code. |
|
|
|
Args: |
|
mask_results (list): bitmap mask results. |
|
|
|
Returns: |
|
list | tuple: RLE encoded mask. |
|
""" |
|
encoded_mask_results = [] |
|
for mask in mask_results: |
|
encoded_mask_results.append( |
|
mask_util.encode( |
|
np.array(mask[:, :, np.newaxis], order='F', |
|
dtype='uint8'))[0]) |
|
return encoded_mask_results |
|
|
|
|
|
def mask2bbox(masks): |
|
"""Obtain tight bounding boxes of binary masks. |
|
|
|
Args: |
|
masks (Tensor): Binary mask of shape (n, h, w). |
|
|
|
Returns: |
|
Tensor: Bboxe with shape (n, 4) of \ |
|
positive region in binary mask. |
|
""" |
|
N = masks.shape[0] |
|
bboxes = masks.new_zeros((N, 4), dtype=torch.float32) |
|
x_any = torch.any(masks, dim=1) |
|
y_any = torch.any(masks, dim=2) |
|
for i in range(N): |
|
x = torch.where(x_any[i, :])[0] |
|
y = torch.where(y_any[i, :])[0] |
|
if len(x) > 0 and len(y) > 0: |
|
bboxes[i, :] = bboxes.new_tensor( |
|
[x[0], y[0], x[-1] + 1, y[-1] + 1]) |
|
|
|
return bboxes |
|
|