|
|
|
from abc import ABCMeta, abstractmethod, abstractproperty, abstractstaticmethod |
|
from typing import List, Optional, Sequence, Tuple, Type, TypeVar, Union |
|
|
|
import numpy as np |
|
import torch |
|
from torch import BoolTensor, Tensor |
|
|
|
from mmdet.structures.mask.structures import BitmapMasks, PolygonMasks |
|
|
|
T = TypeVar('T') |
|
DeviceType = Union[str, torch.device] |
|
IndexType = Union[slice, int, list, torch.LongTensor, torch.cuda.LongTensor, |
|
torch.BoolTensor, torch.cuda.BoolTensor, np.ndarray] |
|
MaskType = Union[BitmapMasks, PolygonMasks] |
|
|
|
|
|
class BaseBoxes(metaclass=ABCMeta): |
|
"""The base class for 2D box types. |
|
|
|
The functions of ``BaseBoxes`` lie in three fields: |
|
|
|
- Verify the boxes shape. |
|
- Support tensor-like operations. |
|
- Define abstract functions for 2D boxes. |
|
|
|
In ``__init__`` , ``BaseBoxes`` verifies the validity of the data shape |
|
w.r.t ``box_dim``. The tensor with the dimension >= 2 and the length |
|
of the last dimension being ``box_dim`` will be regarded as valid. |
|
``BaseBoxes`` will restore them at the field ``tensor``. It's necessary |
|
to override ``box_dim`` in subclass to guarantee the data shape is |
|
correct. |
|
|
|
There are many basic tensor-like functions implemented in ``BaseBoxes``. |
|
In most cases, users can operate ``BaseBoxes`` instance like a normal |
|
tensor. To protect the validity of data shape, All tensor-like functions |
|
cannot modify the last dimension of ``self.tensor``. |
|
|
|
When creating a new box type, users need to inherit from ``BaseBoxes`` |
|
and override abstract methods and specify the ``box_dim``. Then, register |
|
the new box type by using the decorator ``register_box_type``. |
|
|
|
Args: |
|
data (Tensor or np.ndarray or Sequence): The box data with shape |
|
(..., box_dim). |
|
dtype (torch.dtype, Optional): data type of boxes. Defaults to None. |
|
device (str or torch.device, Optional): device of boxes. |
|
Default to None. |
|
clone (bool): Whether clone ``boxes`` or not. Defaults to True. |
|
""" |
|
|
|
|
|
|
|
box_dim: int = 0 |
|
|
|
def __init__(self, |
|
data: Union[Tensor, np.ndarray, Sequence], |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[DeviceType] = None, |
|
clone: bool = True) -> None: |
|
if isinstance(data, (np.ndarray, Tensor, Sequence)): |
|
data = torch.as_tensor(data) |
|
else: |
|
raise TypeError('boxes should be Tensor, ndarray, or Sequence, ', |
|
f'but got {type(data)}') |
|
|
|
if device is not None or dtype is not None: |
|
data = data.to(dtype=dtype, device=device) |
|
|
|
if clone: |
|
data = data.clone() |
|
|
|
if data.numel() == 0: |
|
data = data.reshape((-1, self.box_dim)) |
|
|
|
assert data.dim() >= 2 and data.size(-1) == self.box_dim, \ |
|
('The boxes dimension must >= 2 and the length of the last ' |
|
f'dimension must be {self.box_dim}, but got boxes with ' |
|
f'shape {data.shape}.') |
|
self.tensor = data |
|
|
|
def convert_to(self, dst_type: Union[str, type]) -> 'BaseBoxes': |
|
"""Convert self to another box type. |
|
|
|
Args: |
|
dst_type (str or type): destination box type. |
|
|
|
Returns: |
|
:obj:`BaseBoxes`: destination box type object . |
|
""" |
|
from .box_type import convert_box_type |
|
return convert_box_type(self, dst_type=dst_type) |
|
|
|
def empty_boxes(self: T, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[DeviceType] = None) -> T: |
|
"""Create empty box. |
|
|
|
Args: |
|
dtype (torch.dtype, Optional): data type of boxes. |
|
device (str or torch.device, Optional): device of boxes. |
|
|
|
Returns: |
|
T: empty boxes with shape of (0, box_dim). |
|
""" |
|
empty_box = self.tensor.new_zeros( |
|
0, self.box_dim, dtype=dtype, device=device) |
|
return type(self)(empty_box, clone=False) |
|
|
|
def fake_boxes(self: T, |
|
sizes: Tuple[int], |
|
fill: float = 0, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[DeviceType] = None) -> T: |
|
"""Create fake boxes with specific sizes and fill values. |
|
|
|
Args: |
|
sizes (Tuple[int]): The size of fake boxes. The last value must |
|
be equal with ``self.box_dim``. |
|
fill (float): filling value. Defaults to 0. |
|
dtype (torch.dtype, Optional): data type of boxes. |
|
device (str or torch.device, Optional): device of boxes. |
|
|
|
Returns: |
|
T: Fake boxes with shape of ``sizes``. |
|
""" |
|
fake_boxes = self.tensor.new_full( |
|
sizes, fill, dtype=dtype, device=device) |
|
return type(self)(fake_boxes, clone=False) |
|
|
|
def __getitem__(self: T, index: IndexType) -> T: |
|
"""Rewrite getitem to protect the last dimension shape.""" |
|
boxes = self.tensor |
|
if isinstance(index, np.ndarray): |
|
index = torch.as_tensor(index, device=self.device) |
|
if isinstance(index, Tensor) and index.dtype == torch.bool: |
|
assert index.dim() < boxes.dim() |
|
elif isinstance(index, tuple): |
|
assert len(index) < boxes.dim() |
|
|
|
|
|
if Ellipsis in index: |
|
assert index[-1] is Ellipsis |
|
|
|
boxes = boxes[index] |
|
if boxes.dim() == 1: |
|
boxes = boxes.reshape(1, -1) |
|
return type(self)(boxes, clone=False) |
|
|
|
def __setitem__(self: T, index: IndexType, values: Union[Tensor, T]) -> T: |
|
"""Rewrite setitem to protect the last dimension shape.""" |
|
assert type(values) is type(self), \ |
|
'The value to be set must be the same box type as self' |
|
values = values.tensor |
|
|
|
if isinstance(index, np.ndarray): |
|
index = torch.as_tensor(index, device=self.device) |
|
if isinstance(index, Tensor) and index.dtype == torch.bool: |
|
assert index.dim() < self.tensor.dim() |
|
elif isinstance(index, tuple): |
|
assert len(index) < self.tensor.dim() |
|
|
|
|
|
if Ellipsis in index: |
|
assert index[-1] is Ellipsis |
|
|
|
self.tensor[index] = values |
|
|
|
def __len__(self) -> int: |
|
"""Return the length of self.tensor first dimension.""" |
|
return self.tensor.size(0) |
|
|
|
def __deepcopy__(self, memo): |
|
"""Only clone the ``self.tensor`` when applying deepcopy.""" |
|
cls = self.__class__ |
|
other = cls.__new__(cls) |
|
memo[id(self)] = other |
|
other.tensor = self.tensor.clone() |
|
return other |
|
|
|
def __repr__(self) -> str: |
|
"""Return a strings that describes the object.""" |
|
return self.__class__.__name__ + '(\n' + str(self.tensor) + ')' |
|
|
|
def new_tensor(self, *args, **kwargs) -> Tensor: |
|
"""Reload ``new_tensor`` from self.tensor.""" |
|
return self.tensor.new_tensor(*args, **kwargs) |
|
|
|
def new_full(self, *args, **kwargs) -> Tensor: |
|
"""Reload ``new_full`` from self.tensor.""" |
|
return self.tensor.new_full(*args, **kwargs) |
|
|
|
def new_empty(self, *args, **kwargs) -> Tensor: |
|
"""Reload ``new_empty`` from self.tensor.""" |
|
return self.tensor.new_empty(*args, **kwargs) |
|
|
|
def new_ones(self, *args, **kwargs) -> Tensor: |
|
"""Reload ``new_ones`` from self.tensor.""" |
|
return self.tensor.new_ones(*args, **kwargs) |
|
|
|
def new_zeros(self, *args, **kwargs) -> Tensor: |
|
"""Reload ``new_zeros`` from self.tensor.""" |
|
return self.tensor.new_zeros(*args, **kwargs) |
|
|
|
def size(self, dim: Optional[int] = None) -> Union[int, torch.Size]: |
|
"""Reload new_zeros from self.tensor.""" |
|
|
|
return self.tensor.size() if dim is None else self.tensor.size(dim) |
|
|
|
def dim(self) -> int: |
|
"""Reload ``dim`` from self.tensor.""" |
|
return self.tensor.dim() |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
"""Reload ``device`` from self.tensor.""" |
|
return self.tensor.device |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
"""Reload ``dtype`` from self.tensor.""" |
|
return self.tensor.dtype |
|
|
|
@property |
|
def shape(self) -> torch.Size: |
|
return self.tensor.shape |
|
|
|
def numel(self) -> int: |
|
"""Reload ``numel`` from self.tensor.""" |
|
return self.tensor.numel() |
|
|
|
def numpy(self) -> np.ndarray: |
|
"""Reload ``numpy`` from self.tensor.""" |
|
return self.tensor.numpy() |
|
|
|
def to(self: T, *args, **kwargs) -> T: |
|
"""Reload ``to`` from self.tensor.""" |
|
return type(self)(self.tensor.to(*args, **kwargs), clone=False) |
|
|
|
def cpu(self: T) -> T: |
|
"""Reload ``cpu`` from self.tensor.""" |
|
return type(self)(self.tensor.cpu(), clone=False) |
|
|
|
def cuda(self: T, *args, **kwargs) -> T: |
|
"""Reload ``cuda`` from self.tensor.""" |
|
return type(self)(self.tensor.cuda(*args, **kwargs), clone=False) |
|
|
|
def clone(self: T) -> T: |
|
"""Reload ``clone`` from self.tensor.""" |
|
return type(self)(self.tensor) |
|
|
|
def detach(self: T) -> T: |
|
"""Reload ``detach`` from self.tensor.""" |
|
return type(self)(self.tensor.detach(), clone=False) |
|
|
|
def view(self: T, *shape: Tuple[int]) -> T: |
|
"""Reload ``view`` from self.tensor.""" |
|
return type(self)(self.tensor.view(shape), clone=False) |
|
|
|
def reshape(self: T, *shape: Tuple[int]) -> T: |
|
"""Reload ``reshape`` from self.tensor.""" |
|
return type(self)(self.tensor.reshape(shape), clone=False) |
|
|
|
def expand(self: T, *sizes: Tuple[int]) -> T: |
|
"""Reload ``expand`` from self.tensor.""" |
|
return type(self)(self.tensor.expand(sizes), clone=False) |
|
|
|
def repeat(self: T, *sizes: Tuple[int]) -> T: |
|
"""Reload ``repeat`` from self.tensor.""" |
|
return type(self)(self.tensor.repeat(sizes), clone=False) |
|
|
|
def transpose(self: T, dim0: int, dim1: int) -> T: |
|
"""Reload ``transpose`` from self.tensor.""" |
|
ndim = self.tensor.dim() |
|
assert dim0 != -1 and dim0 != ndim - 1 |
|
assert dim1 != -1 and dim1 != ndim - 1 |
|
return type(self)(self.tensor.transpose(dim0, dim1), clone=False) |
|
|
|
def permute(self: T, *dims: Tuple[int]) -> T: |
|
"""Reload ``permute`` from self.tensor.""" |
|
assert dims[-1] == -1 or dims[-1] == self.tensor.dim() - 1 |
|
return type(self)(self.tensor.permute(dims), clone=False) |
|
|
|
def split(self: T, |
|
split_size_or_sections: Union[int, Sequence[int]], |
|
dim: int = 0) -> List[T]: |
|
"""Reload ``split`` from self.tensor.""" |
|
assert dim != -1 and dim != self.tensor.dim() - 1 |
|
boxes_list = self.tensor.split(split_size_or_sections, dim=dim) |
|
return [type(self)(boxes, clone=False) for boxes in boxes_list] |
|
|
|
def chunk(self: T, chunks: int, dim: int = 0) -> List[T]: |
|
"""Reload ``chunk`` from self.tensor.""" |
|
assert dim != -1 and dim != self.tensor.dim() - 1 |
|
boxes_list = self.tensor.chunk(chunks, dim=dim) |
|
return [type(self)(boxes, clone=False) for boxes in boxes_list] |
|
|
|
def unbind(self: T, dim: int = 0) -> T: |
|
"""Reload ``unbind`` from self.tensor.""" |
|
assert dim != -1 and dim != self.tensor.dim() - 1 |
|
boxes_list = self.tensor.unbind(dim=dim) |
|
return [type(self)(boxes, clone=False) for boxes in boxes_list] |
|
|
|
def flatten(self: T, start_dim: int = 0, end_dim: int = -2) -> T: |
|
"""Reload ``flatten`` from self.tensor.""" |
|
assert end_dim != -1 and end_dim != self.tensor.dim() - 1 |
|
return type(self)(self.tensor.flatten(start_dim, end_dim), clone=False) |
|
|
|
def squeeze(self: T, dim: Optional[int] = None) -> T: |
|
"""Reload ``squeeze`` from self.tensor.""" |
|
boxes = self.tensor.squeeze() if dim is None else \ |
|
self.tensor.squeeze(dim) |
|
return type(self)(boxes, clone=False) |
|
|
|
def unsqueeze(self: T, dim: int) -> T: |
|
"""Reload ``unsqueeze`` from self.tensor.""" |
|
assert dim != -1 and dim != self.tensor.dim() |
|
return type(self)(self.tensor.unsqueeze(dim), clone=False) |
|
|
|
@classmethod |
|
def cat(cls: Type[T], box_list: Sequence[T], dim: int = 0) -> T: |
|
"""Cancatenates a box instance list into one single box instance. |
|
Similar to ``torch.cat``. |
|
|
|
Args: |
|
box_list (Sequence[T]): A sequence of box instances. |
|
dim (int): The dimension over which the box are concatenated. |
|
Defaults to 0. |
|
|
|
Returns: |
|
T: Concatenated box instance. |
|
""" |
|
assert isinstance(box_list, Sequence) |
|
if len(box_list) == 0: |
|
raise ValueError('box_list should not be a empty list.') |
|
|
|
assert dim != -1 and dim != box_list[0].dim() - 1 |
|
assert all(isinstance(boxes, cls) for boxes in box_list) |
|
|
|
th_box_list = [boxes.tensor for boxes in box_list] |
|
return cls(torch.cat(th_box_list, dim=dim), clone=False) |
|
|
|
@classmethod |
|
def stack(cls: Type[T], box_list: Sequence[T], dim: int = 0) -> T: |
|
"""Concatenates a sequence of tensors along a new dimension. Similar to |
|
``torch.stack``. |
|
|
|
Args: |
|
box_list (Sequence[T]): A sequence of box instances. |
|
dim (int): Dimension to insert. Defaults to 0. |
|
|
|
Returns: |
|
T: Concatenated box instance. |
|
""" |
|
assert isinstance(box_list, Sequence) |
|
if len(box_list) == 0: |
|
raise ValueError('box_list should not be a empty list.') |
|
|
|
assert dim != -1 and dim != box_list[0].dim() |
|
assert all(isinstance(boxes, cls) for boxes in box_list) |
|
|
|
th_box_list = [boxes.tensor for boxes in box_list] |
|
return cls(torch.stack(th_box_list, dim=dim), clone=False) |
|
|
|
@abstractproperty |
|
def centers(self) -> Tensor: |
|
"""Return a tensor representing the centers of boxes.""" |
|
pass |
|
|
|
@abstractproperty |
|
def areas(self) -> Tensor: |
|
"""Return a tensor representing the areas of boxes.""" |
|
pass |
|
|
|
@abstractproperty |
|
def widths(self) -> Tensor: |
|
"""Return a tensor representing the widths of boxes.""" |
|
pass |
|
|
|
@abstractproperty |
|
def heights(self) -> Tensor: |
|
"""Return a tensor representing the heights of boxes.""" |
|
pass |
|
|
|
@abstractmethod |
|
def flip_(self, |
|
img_shape: Tuple[int, int], |
|
direction: str = 'horizontal') -> None: |
|
"""Flip boxes horizontally or vertically in-place. |
|
|
|
Args: |
|
img_shape (Tuple[int, int]): A tuple of image height and width. |
|
direction (str): Flip direction, options are "horizontal", |
|
"vertical" and "diagonal". Defaults to "horizontal" |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def translate_(self, distances: Tuple[float, float]) -> None: |
|
"""Translate boxes in-place. |
|
|
|
Args: |
|
distances (Tuple[float, float]): translate distances. The first |
|
is horizontal distance and the second is vertical distance. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def clip_(self, img_shape: Tuple[int, int]) -> None: |
|
"""Clip boxes according to the image shape in-place. |
|
|
|
Args: |
|
img_shape (Tuple[int, int]): A tuple of image height and width. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def rotate_(self, center: Tuple[float, float], angle: float) -> None: |
|
"""Rotate all boxes in-place. |
|
|
|
Args: |
|
center (Tuple[float, float]): Rotation origin. |
|
angle (float): Rotation angle represented in degrees. Positive |
|
values mean clockwise rotation. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def project_(self, homography_matrix: Union[Tensor, np.ndarray]) -> None: |
|
"""Geometric transformat boxes in-place. |
|
|
|
Args: |
|
homography_matrix (Tensor or np.ndarray]): |
|
Shape (3, 3) for geometric transformation. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def rescale_(self, scale_factor: Tuple[float, float]) -> None: |
|
"""Rescale boxes w.r.t. rescale_factor in-place. |
|
|
|
Note: |
|
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes |
|
w.r.t ``scale_facotr``. The difference is that ``resize_`` only |
|
changes the width and the height of boxes, but ``rescale_`` also |
|
rescales the box centers simultaneously. |
|
|
|
Args: |
|
scale_factor (Tuple[float, float]): factors for scaling boxes. |
|
The length should be 2. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def resize_(self, scale_factor: Tuple[float, float]) -> None: |
|
"""Resize the box width and height w.r.t scale_factor in-place. |
|
|
|
Note: |
|
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes |
|
w.r.t ``scale_facotr``. The difference is that ``resize_`` only |
|
changes the width and the height of boxes, but ``rescale_`` also |
|
rescales the box centers simultaneously. |
|
|
|
Args: |
|
scale_factor (Tuple[float, float]): factors for scaling box |
|
shapes. The length should be 2. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def is_inside(self, |
|
img_shape: Tuple[int, int], |
|
all_inside: bool = False, |
|
allowed_border: int = 0) -> BoolTensor: |
|
"""Find boxes inside the image. |
|
|
|
Args: |
|
img_shape (Tuple[int, int]): A tuple of image height and width. |
|
all_inside (bool): Whether the boxes are all inside the image or |
|
part inside the image. Defaults to False. |
|
allowed_border (int): Boxes that extend beyond the image shape |
|
boundary by more than ``allowed_border`` are considered |
|
"outside" Defaults to 0. |
|
Returns: |
|
BoolTensor: A BoolTensor indicating whether the box is inside |
|
the image. Assuming the original boxes have shape (m, n, box_dim), |
|
the output has shape (m, n). |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def find_inside_points(self, |
|
points: Tensor, |
|
is_aligned: bool = False) -> BoolTensor: |
|
"""Find inside box points. Boxes dimension must be 2. |
|
|
|
Args: |
|
points (Tensor): Points coordinates. Has shape of (m, 2). |
|
is_aligned (bool): Whether ``points`` has been aligned with boxes |
|
or not. If True, the length of boxes and ``points`` should be |
|
the same. Defaults to False. |
|
|
|
Returns: |
|
BoolTensor: A BoolTensor indicating whether a point is inside |
|
boxes. Assuming the boxes has shape of (n, box_dim), if |
|
``is_aligned`` is False. The index has shape of (m, n). If |
|
``is_aligned`` is True, m should be equal to n and the index has |
|
shape of (m, ). |
|
""" |
|
pass |
|
|
|
@abstractstaticmethod |
|
def overlaps(boxes1: 'BaseBoxes', |
|
boxes2: 'BaseBoxes', |
|
mode: str = 'iou', |
|
is_aligned: bool = False, |
|
eps: float = 1e-6) -> Tensor: |
|
"""Calculate overlap between two set of boxes with their types |
|
converted to the present box type. |
|
|
|
Args: |
|
boxes1 (:obj:`BaseBoxes`): BaseBoxes with shape of (m, box_dim) |
|
or empty. |
|
boxes2 (:obj:`BaseBoxes`): BaseBoxes with shape of (n, box_dim) |
|
or empty. |
|
mode (str): "iou" (intersection over union), "iof" (intersection |
|
over foreground). Defaults to "iou". |
|
is_aligned (bool): If True, then m and n must be equal. Defaults |
|
to False. |
|
eps (float): A value added to the denominator for numerical |
|
stability. Defaults to 1e-6. |
|
|
|
Returns: |
|
Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) |
|
""" |
|
pass |
|
|
|
@abstractstaticmethod |
|
def from_instance_masks(masks: MaskType) -> 'BaseBoxes': |
|
"""Create boxes from instance masks. |
|
|
|
Args: |
|
masks (:obj:`BitmapMasks` or :obj:`PolygonMasks`): BitmapMasks or |
|
PolygonMasks instance with length of n. |
|
|
|
Returns: |
|
:obj:`BaseBoxes`: Converted boxes with shape of (n, box_dim). |
|
""" |
|
pass |
|
|