|
|
|
import os.path as osp |
|
import warnings |
|
from typing import Optional, Sequence |
|
|
|
import mmcv |
|
from mmengine.fileio import get |
|
from mmengine.hooks import Hook |
|
from mmengine.runner import Runner |
|
from mmengine.utils import mkdir_or_exist |
|
from mmengine.visualization import Visualizer |
|
|
|
from mmdet.registry import HOOKS |
|
from mmdet.structures import DetDataSample |
|
|
|
|
|
@HOOKS.register_module() |
|
class DetVisualizationHook(Hook): |
|
"""Detection Visualization Hook. Used to visualize validation and testing |
|
process prediction results. |
|
|
|
In the testing phase: |
|
|
|
1. If ``show`` is True, it means that only the prediction results are |
|
visualized without storing data, so ``vis_backends`` needs to |
|
be excluded. |
|
2. If ``test_out_dir`` is specified, it means that the prediction results |
|
need to be saved to ``test_out_dir``. In order to avoid vis_backends |
|
also storing data, so ``vis_backends`` needs to be excluded. |
|
3. ``vis_backends`` takes effect if the user does not specify ``show`` |
|
and `test_out_dir``. You can set ``vis_backends`` to WandbVisBackend or |
|
TensorboardVisBackend to store the prediction result in Wandb or |
|
Tensorboard. |
|
|
|
Args: |
|
draw (bool): whether to draw prediction results. If it is False, |
|
it means that no drawing will be done. Defaults to False. |
|
interval (int): The interval of visualization. Defaults to 50. |
|
score_thr (float): The threshold to visualize the bboxes |
|
and masks. Defaults to 0.3. |
|
show (bool): Whether to display the drawn image. Default to False. |
|
wait_time (float): The interval of show (s). Defaults to 0. |
|
test_out_dir (str, optional): directory where painted images |
|
will be saved in testing process. |
|
backend_args (dict, optional): Arguments to instantiate the |
|
corresponding backend. Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
draw: bool = False, |
|
interval: int = 50, |
|
score_thr: float = 0.3, |
|
show: bool = False, |
|
wait_time: float = 0., |
|
test_out_dir: Optional[str] = None, |
|
backend_args: dict = None): |
|
self._visualizer: Visualizer = Visualizer.get_current_instance() |
|
self.interval = interval |
|
self.score_thr = score_thr |
|
self.show = show |
|
if self.show: |
|
|
|
self._visualizer._vis_backends = {} |
|
warnings.warn('The show is True, it means that only ' |
|
'the prediction results are visualized ' |
|
'without storing data, so vis_backends ' |
|
'needs to be excluded.') |
|
|
|
self.wait_time = wait_time |
|
self.backend_args = backend_args |
|
self.draw = draw |
|
self.test_out_dir = test_out_dir |
|
self._test_index = 0 |
|
|
|
def after_val_iter(self, runner: Runner, batch_idx: int, data_batch: dict, |
|
outputs: Sequence[DetDataSample]) -> None: |
|
"""Run after every ``self.interval`` validation iterations. |
|
|
|
Args: |
|
runner (:obj:`Runner`): The runner of the validation process. |
|
batch_idx (int): The index of the current batch in the val loop. |
|
data_batch (dict): Data from dataloader. |
|
outputs (Sequence[:obj:`DetDataSample`]]): A batch of data samples |
|
that contain annotations and predictions. |
|
""" |
|
if self.draw is False: |
|
return |
|
|
|
|
|
|
|
total_curr_iter = runner.iter + batch_idx |
|
|
|
|
|
img_path = outputs[0].img_path |
|
img_bytes = get(img_path, backend_args=self.backend_args) |
|
img = mmcv.imfrombytes(img_bytes, channel_order='rgb') |
|
|
|
if total_curr_iter % self.interval == 0: |
|
self._visualizer.add_datasample( |
|
osp.basename(img_path) if self.show else 'val_img', |
|
img, |
|
data_sample=outputs[0], |
|
show=self.show, |
|
wait_time=self.wait_time, |
|
pred_score_thr=self.score_thr, |
|
step=total_curr_iter) |
|
|
|
def after_test_iter(self, runner: Runner, batch_idx: int, data_batch: dict, |
|
outputs: Sequence[DetDataSample]) -> None: |
|
"""Run after every testing iterations. |
|
|
|
Args: |
|
runner (:obj:`Runner`): The runner of the testing process. |
|
batch_idx (int): The index of the current batch in the val loop. |
|
data_batch (dict): Data from dataloader. |
|
outputs (Sequence[:obj:`DetDataSample`]): A batch of data samples |
|
that contain annotations and predictions. |
|
""" |
|
if self.draw is False: |
|
return |
|
|
|
if self.test_out_dir is not None: |
|
self.test_out_dir = osp.join(runner.work_dir, runner.timestamp, |
|
self.test_out_dir) |
|
mkdir_or_exist(self.test_out_dir) |
|
|
|
for data_sample in outputs: |
|
self._test_index += 1 |
|
|
|
img_path = data_sample.img_path |
|
img_bytes = get(img_path, backend_args=self.backend_args) |
|
img = mmcv.imfrombytes(img_bytes, channel_order='rgb') |
|
|
|
out_file = None |
|
if self.test_out_dir is not None: |
|
out_file = osp.basename(img_path) |
|
out_file = osp.join(self.test_out_dir, out_file) |
|
|
|
self._visualizer.add_datasample( |
|
osp.basename(img_path) if self.show else 'test_img', |
|
img, |
|
data_sample=data_sample, |
|
show=self.show, |
|
wait_time=self.wait_time, |
|
pred_score_thr=self.score_thr, |
|
out_file=out_file, |
|
step=self._test_index) |
|
|