samewind / configs /specdetr_sb-2s-100e_hsi.py
scfive
Resolve README.md conflict and continue rebase
e8f2571
_base_ = [
'./_base_/datasets/hsi_detection.py', './_base_/default_runtime.py'
]
# fp16 = dict(loss_scale=512.)
norm = 'LN' #'IN1d' 'LN''BN1d'
num_levels = 2
in_channels = 30
embed_dims = 256 # embed_dims256
query_initial = 'one'
model = dict(
type='SpecDetr',
num_queries = 900, # num_matching_queries 900
num_query_per_cat= 5,
num_fix_query = 0,
with_box_refine=True,
as_two_stage=True,
num_feature_levels=num_levels,
candidate_bboxes_size = 0.01, # initial candidate_bboxes after encode 0.01
scale_gt_bboxes_size = 0, # [0,0.5) 0.25,
training_dn = True, # use dn when training
# dn_only_pos = False,
dn_type = 'CDN', # DN CDNV1 CDN
query_initial = query_initial,
remove_last_candidate = True, # when the last feacture size of backbone is 1
data_preprocessor=dict(
type='HSIDetDataPreprocessor'),
backbone=dict(
type='No_backbone_ST',
in_channels=in_channels,
embed_dims=embed_dims,
# Please only add indices that would be used
# in FPN, otherwise some parameter will not be used
num_levels=num_levels,
norm_cfg=dict(type=norm),
),
encoder=dict(
num_layers=6,
layer_cfg=dict(
self_attn_cfg=dict(embed_dims=embed_dims, num_levels=num_levels, num_points=4,
dropout=0.0), # 0.1 for DeformDETR
ffn_cfg=dict(
embed_dims=embed_dims,
feedforward_channels=embed_dims*8, # 1024 for DeformDETR
ffn_drop=0.0),
norm_cfg=dict(type=norm),)), # 0.1 for DeformDETR
decoder=dict(
num_layers=6,
return_intermediate=True,
layer_cfg=dict(
self_attn_cfg=dict(embed_dims=embed_dims, num_heads=8,
dropout=0.0), # 0.1 for DeformDETR
cross_attn_cfg=dict(embed_dims=embed_dims, num_levels=num_levels, num_points=4,
dropout=0.0), # 0.1 for DeformDETR
ffn_cfg=dict(
embed_dims=embed_dims,
feedforward_channels=embed_dims*8, # 1024 for DeformDETR 2048 for dino
ffn_drop=0.0),
norm_cfg=dict(type=norm),), # 0.1 for DeformDETR norm_cfg=dict(type='LN')
post_norm_cfg=None),
positional_encoding=dict(
num_feats=embed_dims//2,
normalize=True,
offset=0.0, # -0.5 for DeformDETR
temperature=20), # 10000 for DeformDETR
bbox_head=dict(
type='SpecDetrHead',
num_classes=8,
sync_cls_avg_factor=True,
pre_bboxes_round = False,
use_nms = True,
iou_threshold = 0.01,
embed_dims = embed_dims,
# neg_cls = True,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0), # 2.0 in DeformDETR
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
dn_cfg=dict( # TODO: Move to model.train_cfg ?
label_noise_scale=0.5, # centor 0.1 -0.5
box_noise_scale =1.5, # wh noise 1---
# group_cfg=dict(dynamic=False, num_groups=30,
# num_dn_queries=200),
group_cfg=dict(dynamic=True, num_groups=None,
num_dn_queries=200),
# group_cfg=dict(dynamic=False, num_groups=10,
# num_dn_queries=None),
), # TODO: half num_dn_queries
# training and testing settings
train_cfg=dict(
assigner=dict(
type='DynamicIOUHungarianAssigner',
match_costs=[
dict(type='FocalLossCost', weight=2.0),
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
dict(type='IoUCost', iou_mode='giou', weight=2.0),
dict(type='IoULossCost', iou_mode='iou', weight=1.0)
],
match_num=10, # 1 5
base_match_num=1,
iou_loss_th=0.05,
dynamic_match=True)),
test_cfg=dict(max_per_img=300)) # 100 for DeformDETR
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW',
lr=0.0001, # 0.0002 for DeformDETR
weight_decay=0.0001),
clip_grad=dict(max_norm=0.1, norm_type=2),
paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.1)})
) # custom_keys contains sampling_offsets and reference_points in DeformDETR # noqa
# learning policy
max_epochs = 100
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=20,)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[90],
gamma=0.1)
]
# # NOTE: `auto_scale_lr` is for automatically scaling LR,
# # USER SHOULD NOT CHANGE ITS VALUES.
auto_scale_lr = dict(base_batch_size=4)