_base_ = [ | |
'../_base_/models/rpn_r50_fpn.py', '../_base_/datasets/coco_detection.py', | |
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' | |
] | |
val_evaluator = dict(metric='proposal_fast') | |
test_evaluator = val_evaluator | |
# inference on val dataset and dump the proposals with evaluate metric | |
# data_root = 'data/coco/' | |
# test_evaluator = [ | |
# dict( | |
# type='DumpProposals', | |
# output_dir=data_root + 'proposals/', | |
# proposals_file='rpn_r50_fpn_1x_val2017.pkl'), | |
# dict( | |
# type='CocoMetric', | |
# ann_file=data_root + 'annotations/instances_val2017.json', | |
# metric='proposal_fast', | |
# backend_args={{_base_.backend_args}}, | |
# format_only=False) | |
# ] | |
# inference on training dataset and dump the proposals without evaluate metric | |
# data_root = 'data/coco/' | |
# test_dataloader = dict( | |
# dataset=dict( | |
# ann_file='annotations/instances_train2017.json', | |
# data_prefix=dict(img='train2017/'))) | |
# | |
# test_evaluator = [ | |
# dict( | |
# type='DumpProposals', | |
# output_dir=data_root + 'proposals/', | |
# proposals_file='rpn_r50_fpn_1x_train2017.pkl'), | |
# ] | |