|
_base_ = ['./ld_r18-gflv1-r101_fpn_1x_coco.py'] |
|
teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' |
|
model = dict( |
|
teacher_config='configs/gfl/gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py', |
|
teacher_ckpt=teacher_ckpt, |
|
backbone=dict( |
|
type='ResNet', |
|
depth=101, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=True, |
|
style='pytorch', |
|
init_cfg=dict(type='Pretrained', |
|
checkpoint='torchvision://resnet101')), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
start_level=1, |
|
add_extra_convs='on_output', |
|
num_outs=5)) |
|
|
|
max_epochs = 24 |
|
param_scheduler = [ |
|
dict( |
|
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=max_epochs, |
|
by_epoch=True, |
|
milestones=[16, 22], |
|
gamma=0.1) |
|
] |
|
train_cfg = dict(max_epochs=max_epochs) |
|
|
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='RandomResize', scale=[(1333, 480), (1333, 800)], |
|
keep_ratio=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PackDetInputs') |
|
] |
|
train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) |
|
|