_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), | |
dict( | |
type='InstaBoost', | |
action_candidate=('normal', 'horizontal', 'skip'), | |
action_prob=(1, 0, 0), | |
scale=(0.8, 1.2), | |
dx=15, | |
dy=15, | |
theta=(-1, 1), | |
color_prob=0.5, | |
hflag=False, | |
aug_ratio=0.5), | |
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | |
dict(type='Resize', scale=(1333, 800), keep_ratio=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) | |
max_epochs = 48 | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=max_epochs, | |
by_epoch=True, | |
milestones=[32, 44], | |
gamma=0.1) | |
] | |
train_cfg = dict(max_epochs=max_epochs) | |
# only keep latest 3 checkpoints | |
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3)) | |