_base_ = './faster-rcnn_r50_fpn_1x_coco.py' | |
model = dict( | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[103.530, 116.280, 123.675], | |
std=[1.0, 1.0, 1.0], | |
bgr_to_rgb=False, | |
pad_size_divisor=32), | |
backbone=dict( | |
norm_cfg=dict(requires_grad=False), | |
norm_eval=True, | |
style='caffe', | |
init_cfg=dict( | |
type='Pretrained', | |
checkpoint='open-mmlab://detectron2/resnet50_caffe'))) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=_base_.backend_args), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='RandomChoiceResize', | |
scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), | |
(1333, 800)], | |
keep_ratio=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
# MMEngine support the following two ways, users can choose | |
# according to convenience | |
# train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) | |
_base_.train_dataloader.dataset.pipeline = train_pipeline | |