|
_base_ = [ |
|
'../_base_/models/fast-rcnn_r50_fpn.py', |
|
'../_base_/datasets/coco_detection.py', |
|
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
|
] |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), |
|
dict(type='LoadProposals', num_max_proposals=2000), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='ProposalBroadcaster', |
|
transforms=[ |
|
dict(type='Resize', scale=(1333, 800), keep_ratio=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
]), |
|
dict(type='PackDetInputs') |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), |
|
dict(type='LoadProposals', num_max_proposals=None), |
|
dict( |
|
type='ProposalBroadcaster', |
|
transforms=[ |
|
dict(type='Resize', scale=(1333, 800), keep_ratio=True), |
|
]), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
] |
|
train_dataloader = dict( |
|
dataset=dict( |
|
proposal_file='proposals/rpn_r50_fpn_1x_train2017.pkl', |
|
pipeline=train_pipeline)) |
|
val_dataloader = dict( |
|
dataset=dict( |
|
proposal_file='proposals/rpn_r50_fpn_1x_val2017.pkl', |
|
pipeline=test_pipeline)) |
|
test_dataloader = val_dataloader |
|
|