|
_base_ = [ |
|
'../_base_/models/retinanet_r50_fpn.py', |
|
'../_base_/schedules/schedule_1x.py', |
|
'../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
image_size = (896, 896) |
|
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] |
|
norm_cfg = dict(type='BN', requires_grad=True) |
|
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' |
|
model = dict( |
|
data_preprocessor=dict( |
|
type='DetDataPreprocessor', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
bgr_to_rgb=True, |
|
pad_size_divisor=32, |
|
batch_augments=batch_augments), |
|
backbone=dict( |
|
_delete_=True, |
|
type='EfficientNet', |
|
arch='b3', |
|
drop_path_rate=0.2, |
|
out_indices=(3, 4, 5), |
|
frozen_stages=0, |
|
norm_cfg=dict( |
|
type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), |
|
norm_eval=False, |
|
init_cfg=dict( |
|
type='Pretrained', prefix='backbone', checkpoint=checkpoint)), |
|
neck=dict( |
|
in_channels=[48, 136, 384], |
|
start_level=0, |
|
out_channels=256, |
|
relu_before_extra_convs=True, |
|
no_norm_on_lateral=True, |
|
norm_cfg=norm_cfg), |
|
bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), |
|
|
|
train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) |
|
|
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='RandomResize', |
|
scale=image_size, |
|
ratio_range=(0.8, 1.2), |
|
keep_ratio=True), |
|
dict(type='RandomCrop', crop_size=image_size), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PackDetInputs') |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), |
|
dict(type='Resize', scale=image_size, keep_ratio=True), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
] |
|
train_dataloader = dict( |
|
batch_size=4, num_workers=4, dataset=dict(pipeline=train_pipeline)) |
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) |
|
test_dataloader = val_dataloader |
|
|
|
|
|
optim_wrapper = dict( |
|
optimizer=dict(lr=0.04), |
|
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) |
|
|
|
|
|
max_epochs = 12 |
|
param_scheduler = [ |
|
dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=max_epochs, |
|
by_epoch=True, |
|
milestones=[8, 11], |
|
gamma=0.1) |
|
] |
|
train_cfg = dict(max_epochs=max_epochs) |
|
|
|
|
|
env_cfg = dict(cudnn_benchmark=True) |
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(base_batch_size=32) |
|
|