_base_ = './detr_r50_8xb2-150e_coco.py' | |
# learning policy | |
max_epochs = 500 | |
train_cfg = dict( | |
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=10) | |
param_scheduler = [ | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=max_epochs, | |
by_epoch=True, | |
milestones=[334], | |
gamma=0.1) | |
] | |
# only keep latest 2 checkpoints | |
default_hooks = dict(checkpoint=dict(max_keep_ckpts=2)) | |
# NOTE: `auto_scale_lr` is for automatically scaling LR, | |
# USER SHOULD NOT CHANGE ITS VALUES. | |
# base_batch_size = (8 GPUs) x (2 samples per GPU) | |
auto_scale_lr = dict(base_batch_size=16) | |