Collections: | |
- Name: Conditional DETR | |
Metadata: | |
Training Data: COCO | |
Training Techniques: | |
- AdamW | |
- Multi Scale Train | |
- Gradient Clip | |
Training Resources: 8x A100 GPUs | |
Architecture: | |
- ResNet | |
- Transformer | |
Paper: | |
URL: https://arxiv.org/abs/2108.06152 | |
Title: 'Conditional DETR for Fast Training Convergence' | |
README: configs/conditional_detr/README.md | |
Code: | |
URL: https://github.com/open-mmlab/mmdetection/blob/f4112c9e5611468ffbd57cfba548fd1289264b52/mmdet/models/detectors/conditional_detr.py#L14 | |
Version: v3.0.0rc6 | |
Models: | |
- Name: conditional-detr_r50_8xb2-50e_coco.py | |
In Collection: Conditional DETR | |
Config: configs/conditional_detr/conditional-detr_r50_8xb2-50e_coco.py | |
Metadata: | |
Epochs: 50 | |
Results: | |
- Task: Object Detection | |
Dataset: COCO | |
Metrics: | |
box AP: 40.9 | |
Weights: https://download.openmmlab.com/mmdetection/v3.0/conditional_detr/conditional-detr_r50_8xb2-50e_coco/conditional-detr_r50_8xb2-50e_coco_20221121_180202-c83a1dc0.pth | |