|
_base_ = '../common/ms-90k_coco.py' |
|
|
|
|
|
model = dict( |
|
type='BoxInst', |
|
data_preprocessor=dict( |
|
type='BoxInstDataPreprocessor', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
bgr_to_rgb=True, |
|
pad_size_divisor=32, |
|
mask_stride=4, |
|
pairwise_size=3, |
|
pairwise_dilation=2, |
|
pairwise_color_thresh=0.3, |
|
bottom_pixels_removed=10), |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=True, |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), |
|
style='pytorch'), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
start_level=1, |
|
add_extra_convs='on_output', |
|
num_outs=5, |
|
relu_before_extra_convs=True), |
|
bbox_head=dict( |
|
type='BoxInstBboxHead', |
|
num_params=593, |
|
num_classes=80, |
|
in_channels=256, |
|
stacked_convs=4, |
|
feat_channels=256, |
|
strides=[8, 16, 32, 64, 128], |
|
norm_on_bbox=True, |
|
centerness_on_reg=True, |
|
dcn_on_last_conv=False, |
|
center_sampling=True, |
|
conv_bias=True, |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='GIoULoss', loss_weight=1.0), |
|
loss_centerness=dict( |
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), |
|
mask_head=dict( |
|
type='BoxInstMaskHead', |
|
num_layers=3, |
|
feat_channels=16, |
|
size_of_interest=8, |
|
mask_out_stride=4, |
|
topk_masks_per_img=64, |
|
mask_feature_head=dict( |
|
in_channels=256, |
|
feat_channels=128, |
|
start_level=0, |
|
end_level=2, |
|
out_channels=16, |
|
mask_stride=8, |
|
num_stacked_convs=4, |
|
norm_cfg=dict(type='BN', requires_grad=True)), |
|
loss_mask=dict( |
|
type='DiceLoss', |
|
use_sigmoid=True, |
|
activate=True, |
|
eps=5e-6, |
|
loss_weight=1.0)), |
|
|
|
test_cfg=dict( |
|
nms_pre=1000, |
|
min_bbox_size=0, |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.6), |
|
max_per_img=100, |
|
mask_thr=0.5)) |
|
|
|
|
|
optim_wrapper = dict(optimizer=dict(lr=0.01)) |
|
|
|
|
|
val_evaluator = dict(metric=['bbox', 'segm']) |
|
test_evaluator = val_evaluator |
|
|