Collections: | |
- Name: AutoAssign | |
Metadata: | |
Training Data: COCO | |
Training Techniques: | |
- SGD with Momentum | |
- Weight Decay | |
Training Resources: 8x V100 GPUs | |
Architecture: | |
- AutoAssign | |
- FPN | |
- ResNet | |
Paper: | |
URL: https://arxiv.org/abs/2007.03496 | |
Title: 'AutoAssign: Differentiable Label Assignment for Dense Object Detection' | |
README: configs/autoassign/README.md | |
Code: | |
URL: https://github.com/open-mmlab/mmdetection/blob/v2.12.0/mmdet/models/detectors/autoassign.py#L6 | |
Version: v2.12.0 | |
Models: | |
- Name: autoassign_r50-caffe_fpn_1x_coco | |
In Collection: AutoAssign | |
Config: configs/autoassign/autoassign_r50-caffe_fpn_1x_coco.py | |
Metadata: | |
Training Memory (GB): 4.08 | |
Epochs: 12 | |
Results: | |
- Task: Object Detection | |
Dataset: COCO | |
Metrics: | |
box AP: 40.4 | |
Weights: https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth | |