|
|
|
dataset_type = 'HSIDataset' |
|
data_root = '/media/ubuntu/data/HTD_dataset/SPOD_30b_8c/' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
normalized_basis =3000 |
|
backend_args = None |
|
train_pipeline = [ |
|
dict(type='LoadHyperspectralImageFromFiles', to_float32 =True, normalized_basis=normalized_basis), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
|
|
dict(type='HSIResize', scale_factor=1, keep_ratio=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PackDetInputs',meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', 'flip_direction','scale_factor')) |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadHyperspectralImageFromFiles', to_float32 =True, normalized_basis=normalized_basis), |
|
|
|
dict(type='HSIResize', scale_factor=1, keep_ratio=True), |
|
|
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) |
|
] |
|
train_dataloader = dict( |
|
batch_size=4, |
|
num_workers=2, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
batch_sampler=dict(type='AspectRatioBatchSampler'), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='annotations/train.json', |
|
data_prefix=dict(img='train/'), |
|
filter_cfg=dict(filter_empty_gt=True, min_size=32), |
|
pipeline=train_pipeline, |
|
backend_args=backend_args)) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=2, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='annotations/test.json', |
|
data_prefix=dict(img='test/'), |
|
test_mode=True, |
|
pipeline=test_pipeline, |
|
backend_args=backend_args)) |
|
test_dataloader = val_dataloader |
|
|
|
val_evaluator = dict( |
|
type='CocoMetric', |
|
ann_file=data_root + 'annotations/test.json', |
|
metric=['bbox','proposal_fast'], |
|
classwise = True, |
|
format_only=False, |
|
backend_args=backend_args) |
|
test_evaluator = val_evaluator |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|