samewind / configs /_base_ /datasets /hsi_detection.py
scfive
Resolve README.md conflict and continue rebase
e8f2571
# dataset settings
dataset_type = 'HSIDataset'
data_root = '/media/ubuntu/data/HTD_dataset/SPOD_30b_8c/'
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection/',
# 'data/': 's3://openmmlab/datasets/detection/'
# }))
normalized_basis =3000
backend_args = None
train_pipeline = [
dict(type='LoadHyperspectralImageFromFiles', to_float32 =True, normalized_basis=normalized_basis),
dict(type='LoadAnnotations', with_bbox=True),
# dict(type='Resize', scale=(512, 512), keep_ratio=True),
dict(type='HSIResize', scale_factor=1, keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs',meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', 'flip_direction','scale_factor'))
]
test_pipeline = [
dict(type='LoadHyperspectralImageFromFiles', to_float32 =True, normalized_basis=normalized_basis),
# dict(type='Resize', scale=(512, 512), keep_ratio=True),
dict(type='HSIResize', scale_factor=1, keep_ratio=True),
# If you don't have a gt annotation, delete the pipeline
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
train_dataloader = dict(
batch_size=4,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/train.json',
data_prefix=dict(img='train/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline,
backend_args=backend_args))
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/test.json',
data_prefix=dict(img='test/'),
test_mode=True,
pipeline=test_pipeline,
backend_args=backend_args))
test_dataloader = val_dataloader
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/test.json',
metric=['bbox','proposal_fast'],
classwise = True,
format_only=False,
backend_args=backend_args)
test_evaluator = val_evaluator
# inference on test dataset and
# format the output results for submission.
# test_dataloader = dict(
# batch_size=1,
# num_workers=2,
# persistent_workers=True,
# drop_last=False,
# sampler=dict(type='DefaultSampler', shuffle=False),
# dataset=dict(
# type=dataset_type,
# data_root=data_root,
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
# data_prefix=dict(img='test2017/'),
# test_mode=True,
# pipeline=test_pipeline))
# test_evaluator = dict(
# type='CocoMetric',
# metric='bbox',
# format_only=True,
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
# outfile_prefix='./work_dirs/coco_detection/test')