File size: 3,896 Bytes
e8f2571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
_base_ = '../_base_/default_runtime.py'

# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection/coco/'

# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection/',
#         'data/': 's3://openmmlab/datasets/detection/'
#     }))
backend_args = None

# Align with Detectron2
backend = 'pillow'
train_pipeline = [
    dict(
        type='LoadImageFromFile',
        backend_args=backend_args,
        imdecode_backend=backend),
    dict(
        type='LoadAnnotations',
        with_bbox=True,
        with_mask=True,
        poly2mask=False),
    dict(
        type='RandomChoiceResize',
        scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
                (1333, 768), (1333, 800)],
        keep_ratio=True,
        backend=backend),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs')
]
test_pipeline = [
    dict(
        type='LoadImageFromFile',
        backend_args=backend_args,
        imdecode_backend=backend),
    dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend=backend),
    dict(
        type='LoadAnnotations',
        with_bbox=True,
        with_mask=True,
        poly2mask=False),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    pin_memory=True,
    sampler=dict(type='InfiniteSampler', shuffle=True),
    batch_sampler=dict(type='AspectRatioBatchSampler'),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/instances_train2017.json',
        data_prefix=dict(img='train2017/'),
        filter_cfg=dict(filter_empty_gt=True, min_size=32),
        pipeline=train_pipeline,
        backend_args=backend_args))
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    pin_memory=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/instances_val2017.json',
        data_prefix=dict(img='val2017/'),
        test_mode=True,
        pipeline=test_pipeline,
        backend_args=backend_args))
test_dataloader = val_dataloader

val_evaluator = dict(
    type='CocoMetric',
    ann_file=data_root + 'annotations/instances_val2017.json',
    metric=['bbox', 'segm'],
    format_only=False,
    backend_args=backend_args)
test_evaluator = val_evaluator

# training schedule for 90k
max_iter = 90000
train_cfg = dict(
    type='IterBasedTrainLoop', max_iters=max_iter, val_interval=10000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

# learning rate
param_scheduler = [
    dict(
        type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
        end=1000),
    dict(
        type='MultiStepLR',
        begin=0,
        end=max_iter,
        by_epoch=False,
        milestones=[60000, 80000],
        gamma=0.1)
]

# optimizer
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000))
log_processor = dict(by_epoch=False)