razhan's picture
Update app.py
baa57e1 verified
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from pytubefix import YouTube
from pytubefix.cli import on_progress
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
BATCH_SIZE = 1
FILE_LIMIT_MB = 30
YT_LENGTH_LIMIT_S = 60 * 10 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# @spaces.GPU
def transcribe(inputs, task="transcribe"):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
# def download_yt_audio(yt_url, filename):
# info_loader = youtube_dl.YoutubeDL()
# try:
# info = info_loader.extract_info(yt_url, download=False)
# except youtube_dl.utils.DownloadError as err:
# raise gr.Error(str(err))
# file_length = info["duration_string"]
# file_h_m_s = file_length.split(":")
# file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
# if len(file_h_m_s) == 1:
# file_h_m_s.insert(0, 0)
# if len(file_h_m_s) == 2:
# file_h_m_s.insert(0, 0)
# file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
# if file_length_s > YT_LENGTH_LIMIT_S:
# yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
# file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
# raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
# ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
# with youtube_dl.YoutubeDL(ydl_opts) as ydl:
# try:
# ydl.download([yt_url])
# except youtube_dl.utils.ExtractorError as err:
# raise gr.Error(str(err))
# yt = pt.YouTube(yt_url)
# stream = yt.streams.filter(only_audio=True)[0]
# stream.download(filename=filename)
# @spaces.GPU
# def yt_transcribe(yt_url, task="transcribe", max_filesize=75.0):
# html_embed_str = _return_yt_html_embed(yt_url)
# with tempfile.TemporaryDirectory() as tmpdirname:
# # filepath = os.path.join(tmpdirname, "video.mp4")
# filepath = os.path.join(tmpdirname, "audio.mp3")
# download_yt_audio(yt_url, filepath)
# with open(filepath, "rb") as f:
# inputs = f.read()
# inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
# inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
# text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
# return html_embed_str, text
def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress(), max_filesize=75.0):
progress(0, desc="Loading audio file...")
html_embed_str = _return_yt_html_embed(yt_url)
try:
# yt = pytube.YouTube(yt_url)
# stream = yt.streams.filter(only_audio=True)[0]
yt = YouTube(yt_url, on_progress_callback = on_progress, use_po_token=True)
stream = yt.streams.get_audio_only()
except:
raise gr.Error("An error occurred while loading the YouTube video. Please try again.")
if stream.filesize_mb > max_filesize:
raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.")
# stream.download(filename="audio.mp3")
stream.download(filename="audio.mp3", mp3=True)
with open("audio.mp3", "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return html_embed_str, text
demo = gr.Blocks(theme=gr.themes.Ocean())
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Whisper Horami Demo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
flagging_mode="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Whisper Horami Demo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
flagging_mode="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
],
outputs=["html", "text"],
title="Whisper Horami Demo: Translate YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
flagging_mode="never",
)
with demo:
# gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
demo.queue().launch(ssr_mode=False)
# import spaces
# import torch
# import gradio as gr
# from pytubefix import YouTube
# from pytubefix.cli import on_progress
# from transformers import pipeline
# from transformers.pipelines.audio_utils import ffmpeg_read
# import tempfile
# import os
# MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
# BATCH_SIZE = 1
# device = 0 if torch.cuda.is_available() else "cpu"
# pipe = pipeline(
# task="automatic-speech-recognition",
# model=MODEL_NAME,
# chunk_length_s=30,
# device=device,
# )
# def transcribe(inputs, task="transcribe"):
# if inputs is None:
# raise gr.Error("Please upload or record an audio file before submitting.")
# result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
# return result["text"]
# def _return_yt_html_embed(yt_url):
# video_id = yt_url.split("?v=")[-1]
# return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'
# def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress()):
# progress(0, desc="Loading audio file...")
# html_embed = _return_yt_html_embed(yt_url)
# try:
# yt = YouTube(yt_url, on_progress_callback=on_progress, use_po_token=True)
# stream = yt.streams.get_audio_only()
# except Exception as e:
# raise gr.Error(f"Error loading YouTube video: {str(e)}")
# with tempfile.TemporaryDirectory() as tmpdir:
# file_path = os.path.join(tmpdir, "audio.mp3")
# stream.download(filename=file_path)
# with open(file_path, "rb") as f:
# audio_data = f.read()
# audio = ffmpeg_read(audio_data, pipe.feature_extractor.sampling_rate)
# inputs = {"array": audio, "sampling_rate": pipe.feature_extractor.sampling_rate}
# result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
# return html_embed, result["text"]
# demo = gr.Blocks(theme=gr.themes.Ocean())
# common_inputs = [
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
# ]
# mf_transcribe = gr.Interface(
# fn=transcribe,
# inputs=[
# gr.Audio(sources="microphone", type="filepath"),
# *common_inputs
# ],
# outputs="text",
# title="Whisper Horami: Live Transcription",
# description="Transcribe audio from your microphone in real-time"
# )
# file_transcribe = gr.Interface(
# fn=transcribe,
# inputs=[
# gr.Audio(sources="upload", type="filepath", label="Audio file"),
# *common_inputs
# ],
# outputs="text",
# title="Whisper Horami: File Transcription",
# description="Upload an audio file for transcription"
# )
# yt_interface = gr.Interface(
# fn=yt_transcribe,
# inputs=[
# gr.Textbox(placeholder="YouTube URL", label="Video URL"),
# *common_inputs
# ],
# outputs=["html", "text"],
# title="Whisper Horami: YouTube Transcription",
# description="Transcribe audio from YouTube videos"
# )
# with demo:
# gr.TabbedInterface(
# [mf_transcribe, file_transcribe],
# ["Microphone", "Audio File",]
# )
# demo.queue().launch(ssr_mode=False)