Spaces:
Sleeping
Sleeping
File size: 9,871 Bytes
9040397 0392a4f 4792e15 0239856 4792e15 0239856 856a243 0239856 4792e15 0392a4f 0239856 a449bcc 4792e15 4987242 4295c91 baa57e1 0239856 4792e15 0392a4f 4792e15 0239856 4987242 0392a4f 0239856 4792e15 0392a4f 0239856 3a88da4 0239856 9040397 0239856 3a88da4 0239856 856a243 9040397 0239856 4792e15 0239856 4792e15 0239856 0392a4f 0239856 9040397 4792e15 b2b8769 baa57e1 4792e15 0239856 0392a4f baa57e1 0392a4f 0239856 4792e15 0239856 4792e15 0392a4f 0239856 0392a4f 0239856 4792e15 0392a4f 0239856 4792e15 0392a4f 0239856 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from pytubefix import YouTube
from pytubefix.cli import on_progress
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
BATCH_SIZE = 1
FILE_LIMIT_MB = 30
YT_LENGTH_LIMIT_S = 60 * 10 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# @spaces.GPU
def transcribe(inputs, task="transcribe"):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
# def download_yt_audio(yt_url, filename):
# info_loader = youtube_dl.YoutubeDL()
# try:
# info = info_loader.extract_info(yt_url, download=False)
# except youtube_dl.utils.DownloadError as err:
# raise gr.Error(str(err))
# file_length = info["duration_string"]
# file_h_m_s = file_length.split(":")
# file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
# if len(file_h_m_s) == 1:
# file_h_m_s.insert(0, 0)
# if len(file_h_m_s) == 2:
# file_h_m_s.insert(0, 0)
# file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
# if file_length_s > YT_LENGTH_LIMIT_S:
# yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
# file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
# raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
# ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
# with youtube_dl.YoutubeDL(ydl_opts) as ydl:
# try:
# ydl.download([yt_url])
# except youtube_dl.utils.ExtractorError as err:
# raise gr.Error(str(err))
# yt = pt.YouTube(yt_url)
# stream = yt.streams.filter(only_audio=True)[0]
# stream.download(filename=filename)
# @spaces.GPU
# def yt_transcribe(yt_url, task="transcribe", max_filesize=75.0):
# html_embed_str = _return_yt_html_embed(yt_url)
# with tempfile.TemporaryDirectory() as tmpdirname:
# # filepath = os.path.join(tmpdirname, "video.mp4")
# filepath = os.path.join(tmpdirname, "audio.mp3")
# download_yt_audio(yt_url, filepath)
# with open(filepath, "rb") as f:
# inputs = f.read()
# inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
# inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
# text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
# return html_embed_str, text
def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress(), max_filesize=75.0):
progress(0, desc="Loading audio file...")
html_embed_str = _return_yt_html_embed(yt_url)
try:
# yt = pytube.YouTube(yt_url)
# stream = yt.streams.filter(only_audio=True)[0]
yt = YouTube(yt_url, on_progress_callback = on_progress, use_po_token=True)
stream = yt.streams.get_audio_only()
except:
raise gr.Error("An error occurred while loading the YouTube video. Please try again.")
if stream.filesize_mb > max_filesize:
raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.")
# stream.download(filename="audio.mp3")
stream.download(filename="audio.mp3", mp3=True)
with open("audio.mp3", "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return html_embed_str, text
demo = gr.Blocks(theme=gr.themes.Ocean())
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Whisper Horami Demo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
flagging_mode="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Whisper Horami Demo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
flagging_mode="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
],
outputs=["html", "text"],
title="Whisper Horami Demo: Translate YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
flagging_mode="never",
)
with demo:
# gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
demo.queue().launch(ssr_mode=False)
# import spaces
# import torch
# import gradio as gr
# from pytubefix import YouTube
# from pytubefix.cli import on_progress
# from transformers import pipeline
# from transformers.pipelines.audio_utils import ffmpeg_read
# import tempfile
# import os
# MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
# BATCH_SIZE = 1
# device = 0 if torch.cuda.is_available() else "cpu"
# pipe = pipeline(
# task="automatic-speech-recognition",
# model=MODEL_NAME,
# chunk_length_s=30,
# device=device,
# )
# def transcribe(inputs, task="transcribe"):
# if inputs is None:
# raise gr.Error("Please upload or record an audio file before submitting.")
# result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
# return result["text"]
# def _return_yt_html_embed(yt_url):
# video_id = yt_url.split("?v=")[-1]
# return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'
# def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress()):
# progress(0, desc="Loading audio file...")
# html_embed = _return_yt_html_embed(yt_url)
# try:
# yt = YouTube(yt_url, on_progress_callback=on_progress, use_po_token=True)
# stream = yt.streams.get_audio_only()
# except Exception as e:
# raise gr.Error(f"Error loading YouTube video: {str(e)}")
# with tempfile.TemporaryDirectory() as tmpdir:
# file_path = os.path.join(tmpdir, "audio.mp3")
# stream.download(filename=file_path)
# with open(file_path, "rb") as f:
# audio_data = f.read()
# audio = ffmpeg_read(audio_data, pipe.feature_extractor.sampling_rate)
# inputs = {"array": audio, "sampling_rate": pipe.feature_extractor.sampling_rate}
# result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
# return html_embed, result["text"]
# demo = gr.Blocks(theme=gr.themes.Ocean())
# common_inputs = [
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
# ]
# mf_transcribe = gr.Interface(
# fn=transcribe,
# inputs=[
# gr.Audio(sources="microphone", type="filepath"),
# *common_inputs
# ],
# outputs="text",
# title="Whisper Horami: Live Transcription",
# description="Transcribe audio from your microphone in real-time"
# )
# file_transcribe = gr.Interface(
# fn=transcribe,
# inputs=[
# gr.Audio(sources="upload", type="filepath", label="Audio file"),
# *common_inputs
# ],
# outputs="text",
# title="Whisper Horami: File Transcription",
# description="Upload an audio file for transcription"
# )
# yt_interface = gr.Interface(
# fn=yt_transcribe,
# inputs=[
# gr.Textbox(placeholder="YouTube URL", label="Video URL"),
# *common_inputs
# ],
# outputs=["html", "text"],
# title="Whisper Horami: YouTube Transcription",
# description="Transcribe audio from YouTube videos"
# )
# with demo:
# gr.TabbedInterface(
# [mf_transcribe, file_transcribe],
# ["Microphone", "Audio File",]
# )
# demo.queue().launch(ssr_mode=False)
|