File size: 9,871 Bytes
9040397
 
 
0392a4f
4792e15
0239856
4792e15
0239856
856a243
 
0239856
4792e15
0392a4f
0239856
a449bcc
 
4792e15
4987242
4295c91
baa57e1
0239856
4792e15
 
0392a4f
4792e15
 
 
 
 
 
 
0239856
 
4987242
0392a4f
0239856
 
 
 
4792e15
 
 
0392a4f
0239856
 
 
 
 
3a88da4
0239856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9040397
0239856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a88da4
0239856
 
 
 
856a243
9040397
0239856
 
4792e15
0239856
 
4792e15
0239856
 
 
 
 
0392a4f
0239856
 
 
 
 
 
 
9040397
4792e15
 
 
b2b8769
baa57e1
4792e15
 
0239856
 
 
 
 
 
 
0392a4f
 
 
 
 
 
baa57e1
0392a4f
 
0239856
 
 
 
 
 
 
4792e15
 
0239856
4792e15
0392a4f
0239856
 
0392a4f
 
0239856
 
 
 
 
 
 
4792e15
 
0392a4f
0239856
 
4792e15
0392a4f
0239856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289



import spaces
import torch

import gradio as gr
import yt_dlp as youtube_dl
from pytubefix import YouTube
from pytubefix.cli import on_progress

from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os

MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
BATCH_SIZE = 1
FILE_LIMIT_MB = 30
YT_LENGTH_LIMIT_S = 60 * 10  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


# @spaces.GPU
def transcribe(inputs, task="transcribe"):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return  text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

# def download_yt_audio(yt_url, filename):
    # info_loader = youtube_dl.YoutubeDL()
    
    # try:
    #     info = info_loader.extract_info(yt_url, download=False)
    # except youtube_dl.utils.DownloadError as err:
    #     raise gr.Error(str(err))
    
    # file_length = info["duration_string"]
    # file_h_m_s = file_length.split(":")
    # file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    # if len(file_h_m_s) == 1:
    #     file_h_m_s.insert(0, 0)
    # if len(file_h_m_s) == 2:
    #     file_h_m_s.insert(0, 0)
    # file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    # if file_length_s > YT_LENGTH_LIMIT_S:
    #     yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
    #     file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
    #     raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    # ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    # with youtube_dl.YoutubeDL(ydl_opts) as ydl:
    #     try:
    #         ydl.download([yt_url])
    #     except youtube_dl.utils.ExtractorError as err:
    #         raise gr.Error(str(err))
    # yt = pt.YouTube(yt_url)
    # stream = yt.streams.filter(only_audio=True)[0]
    # stream.download(filename=filename)

# @spaces.GPU
# def yt_transcribe(yt_url, task="transcribe", max_filesize=75.0):
#     html_embed_str = _return_yt_html_embed(yt_url)

#     with tempfile.TemporaryDirectory() as tmpdirname:
#         # filepath = os.path.join(tmpdirname, "video.mp4")
#         filepath = os.path.join(tmpdirname, "audio.mp3")
#         download_yt_audio(yt_url, filepath)
#         with open(filepath, "rb") as f:
#             inputs = f.read()

#     inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
#     inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

#     text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]

#     return html_embed_str, text


def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress(), max_filesize=75.0):
    progress(0, desc="Loading audio file...")
    html_embed_str = _return_yt_html_embed(yt_url)
    try:
        # yt = pytube.YouTube(yt_url)
        # stream = yt.streams.filter(only_audio=True)[0]
        yt = YouTube(yt_url, on_progress_callback = on_progress, use_po_token=True)
         
        stream = yt.streams.get_audio_only()
        
    except:
        raise gr.Error("An error occurred while loading the YouTube video. Please try again.")

    if stream.filesize_mb > max_filesize:
        raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.")

    # stream.download(filename="audio.mp3")
    stream.download(filename="audio.mp3", mp3=True)

    with open("audio.mp3", "rb") as f:
        inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return html_embed_str, text


demo = gr.Blocks(theme=gr.themes.Ocean())

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="Whisper Horami Demo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    flagging_mode="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="Whisper Horami Demo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    flagging_mode="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        # gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
    ],
    outputs=["html", "text"],
    title="Whisper Horami Demo: Translate YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
        f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
        " arbitrary length."
    ),
    flagging_mode="never",
)

with demo:
    # gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
    gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])

demo.queue().launch(ssr_mode=False)

# import spaces
# import torch
# import gradio as gr
# from pytubefix import YouTube
# from pytubefix.cli import on_progress
# from transformers import pipeline
# from transformers.pipelines.audio_utils import ffmpeg_read
# import tempfile
# import os

# MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
# BATCH_SIZE = 1

# device = 0 if torch.cuda.is_available() else "cpu"

# pipe = pipeline(
#     task="automatic-speech-recognition",
#     model=MODEL_NAME,
#     chunk_length_s=30,
#     device=device,
# )

# def transcribe(inputs, task="transcribe"):
#     if inputs is None:
#         raise gr.Error("Please upload or record an audio file before submitting.")

#     result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
#     return result["text"]

# def _return_yt_html_embed(yt_url):
#     video_id = yt_url.split("?v=")[-1]
#     return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'

# def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress()):
#     progress(0, desc="Loading audio file...")
#     html_embed = _return_yt_html_embed(yt_url)
    
#     try:
#         yt = YouTube(yt_url, on_progress_callback=on_progress, use_po_token=True)
#         stream = yt.streams.get_audio_only()
#     except Exception as e:
#         raise gr.Error(f"Error loading YouTube video: {str(e)}")

#     with tempfile.TemporaryDirectory() as tmpdir:
#         file_path = os.path.join(tmpdir, "audio.mp3")
#         stream.download(filename=file_path)
        
#         with open(file_path, "rb") as f:
#             audio_data = f.read()

#     audio = ffmpeg_read(audio_data, pipe.feature_extractor.sampling_rate)
#     inputs = {"array": audio, "sampling_rate": pipe.feature_extractor.sampling_rate}
    
#     result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
#     return html_embed, result["text"]

# demo = gr.Blocks(theme=gr.themes.Ocean())

# common_inputs = [
#     gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
# ]

# mf_transcribe = gr.Interface(
#     fn=transcribe,
#     inputs=[
#         gr.Audio(sources="microphone", type="filepath"),
#         *common_inputs
#     ],
#     outputs="text",
#     title="Whisper Horami: Live Transcription",
#     description="Transcribe audio from your microphone in real-time"
# )

# file_transcribe = gr.Interface(
#     fn=transcribe,
#     inputs=[
#         gr.Audio(sources="upload", type="filepath", label="Audio file"),
#         *common_inputs
#     ],
#     outputs="text",
#     title="Whisper Horami: File Transcription",
#     description="Upload an audio file for transcription"
# )

# yt_interface = gr.Interface(
#     fn=yt_transcribe,
#     inputs=[
#         gr.Textbox(placeholder="YouTube URL", label="Video URL"),
#         *common_inputs
#     ],
#     outputs=["html", "text"],
#     title="Whisper Horami: YouTube Transcription",
#     description="Transcribe audio from YouTube videos"
# )

# with demo:
#     gr.TabbedInterface(
#         [mf_transcribe, file_transcribe],
#         ["Microphone", "Audio File",]
#     )

# demo.queue().launch(ssr_mode=False)