File size: 1,472 Bytes
9ffcbf9 431fe4b 9ffcbf9 431fe4b 9ffcbf9 431fe4b 9ffcbf9 431fe4b 9ffcbf9 431fe4b 9ffcbf9 431fe4b 9ffcbf9 431fe4b 9ffcbf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import pandas as pd
import gradio as gr
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
# Step 1: Load train.csv directly
csv_path = "train.csv" # file you uploaded directly
df = pd.read_csv(csv_path, header=None, names=["label", "title", "description"])
# Step 2: Combine title and description
df["content"] = df["title"].fillna("") + ". " + df["description"].fillna("")
# Step 3: Encode content using SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
corpus_embeddings = model.encode(df["content"].tolist(), show_progress_bar=True)
# Step 4: Build FAISS index
embedding_dim = corpus_embeddings.shape[1]
index = faiss.IndexFlatL2(embedding_dim)
index.add(corpus_embeddings)
# Step 5: Define retrieval function
def retrieve_and_respond(claim, k=5):
query_embedding = model.encode([claim])
D, I = index.search(np.array(query_embedding), k)
results = []
for idx in I[0]:
row = df.iloc[idx]
results.append(f"*Title:* {row['title']}\n*Description:* {row['description']}\n*Label:* {row['label']}\n")
return "\n\n".join(results)
# Step 6: Gradio UI
iface = gr.Interface(
fn=retrieve_and_respond,
inputs=gr.Textbox(lines=2, placeholder="Enter a news-related claim here..."),
outputs="markdown",
title="Claim Verifier using AG News",
description="Enter a claim and get the most relevant AG News articles to help verify or refute it."
)
iface.launch() |