Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,26 @@
|
|
1 |
-
import os
|
2 |
-
import zipfile
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import faiss
|
7 |
import numpy as np
|
8 |
|
9 |
-
# Step 1:
|
10 |
-
|
11 |
-
extracted_path = "climate_data"
|
12 |
-
|
13 |
-
if not os.path.exists(extracted_path):
|
14 |
-
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
15 |
-
zip_ref.extractall(extracted_path)
|
16 |
-
|
17 |
-
# Step 2: Load train.csv
|
18 |
-
csv_path = os.path.join(extracted_path, "train.csv")
|
19 |
df = pd.read_csv(csv_path, header=None, names=["label", "title", "description"])
|
20 |
|
21 |
-
# Combine title and description
|
22 |
df["content"] = df["title"].fillna("") + ". " + df["description"].fillna("")
|
23 |
|
24 |
-
# Step 3: Encode using SentenceTransformer
|
25 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
26 |
corpus_embeddings = model.encode(df["content"].tolist(), show_progress_bar=True)
|
27 |
|
28 |
-
# Step 4:
|
29 |
embedding_dim = corpus_embeddings.shape[1]
|
30 |
index = faiss.IndexFlatL2(embedding_dim)
|
31 |
index.add(corpus_embeddings)
|
32 |
|
|
|
33 |
def retrieve_and_respond(claim, k=5):
|
34 |
query_embedding = model.encode([claim])
|
35 |
D, I = index.search(np.array(query_embedding), k)
|
@@ -41,13 +32,13 @@ def retrieve_and_respond(claim, k=5):
|
|
41 |
|
42 |
return "\n\n".join(results)
|
43 |
|
44 |
-
# Step
|
45 |
iface = gr.Interface(
|
46 |
fn=retrieve_and_respond,
|
47 |
inputs=gr.Textbox(lines=2, placeholder="Enter a news-related claim here..."),
|
48 |
outputs="markdown",
|
49 |
-
title="Claim Verifier using
|
50 |
-
description="Enter a claim and
|
51 |
)
|
52 |
|
53 |
iface.launch()
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import faiss
|
5 |
import numpy as np
|
6 |
|
7 |
+
# Step 1: Load train.csv directly
|
8 |
+
csv_path = "train.csv" # file you uploaded directly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
df = pd.read_csv(csv_path, header=None, names=["label", "title", "description"])
|
10 |
|
11 |
+
# Step 2: Combine title and description
|
12 |
df["content"] = df["title"].fillna("") + ". " + df["description"].fillna("")
|
13 |
|
14 |
+
# Step 3: Encode content using SentenceTransformer
|
15 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
16 |
corpus_embeddings = model.encode(df["content"].tolist(), show_progress_bar=True)
|
17 |
|
18 |
+
# Step 4: Build FAISS index
|
19 |
embedding_dim = corpus_embeddings.shape[1]
|
20 |
index = faiss.IndexFlatL2(embedding_dim)
|
21 |
index.add(corpus_embeddings)
|
22 |
|
23 |
+
# Step 5: Define retrieval function
|
24 |
def retrieve_and_respond(claim, k=5):
|
25 |
query_embedding = model.encode([claim])
|
26 |
D, I = index.search(np.array(query_embedding), k)
|
|
|
32 |
|
33 |
return "\n\n".join(results)
|
34 |
|
35 |
+
# Step 6: Gradio UI
|
36 |
iface = gr.Interface(
|
37 |
fn=retrieve_and_respond,
|
38 |
inputs=gr.Textbox(lines=2, placeholder="Enter a news-related claim here..."),
|
39 |
outputs="markdown",
|
40 |
+
title="Claim Verifier using AG News",
|
41 |
+
description="Enter a claim and get the most relevant AG News articles to help verify or refute it."
|
42 |
)
|
43 |
|
44 |
iface.launch()
|