crisper-whisper / app.py
rafaaa2105's picture
Update app.py
9db60e1 verified
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time
# Environment and model configuration
hf_token = os.getenv('HF_TOKEN')
MODEL_NAME = "nyrahealth/CrisperWhisper"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
# Device setup
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Timestamp adjustment function
def adjust_pauses_for_hf_pipeline_output(pipeline_output, split_threshold=0.12):
"""
Adjust pause timings by distributing pauses up to the threshold evenly between adjacent words.
"""
adjusted_chunks = pipeline_output["chunks"].copy()
for i in range(len(adjusted_chunks) - 1):
current_chunk = adjusted_chunks[i]
next_chunk = adjusted_chunks[i + 1]
current_start, current_end = current_chunk["timestamp"]
next_start, next_end = next_chunk["timestamp"]
pause_duration = next_start - current_end
if pause_duration > 0:
if pause_duration > split_threshold:
distribute = split_threshold / 2
else:
distribute = pause_duration / 2
# Adjust current chunk end time
adjusted_chunks[i]["timestamp"] = (current_start, current_end + distribute)
# Adjust next chunk start time
adjusted_chunks[i + 1]["timestamp"] = (next_start - distribute, next_end)
pipeline_output["chunks"] = adjusted_chunks
return pipeline_output
# Initialize pipeline
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
token=hf_token,
torch_dtype=torch_dtype,
chunk_length_s=30,
device=device,
return_timestamps='word', # Enable word-level timestamps
)
# Transcribe function for microphone and file inputs
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
# Get full pipeline output
raw_output = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps='word'
)
# Apply timestamp adjustment
adjusted_output = adjust_pauses_for_hf_pipeline_output(raw_output)
# Format output with timestamps
formatted_text = ""
for chunk in adjusted_output["chunks"]:
start = chunk["timestamp"][0]
text = chunk["text"]
formatted_text += f"[{start:.2f}] {text}\n"
return formatted_text
# YouTube HTML embed function
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
# YouTube audio download function
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
# Transcribe function for YouTube inputs
@spaces.GPU
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
# Get full pipeline output
raw_output = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps='word'
)
# Apply timestamp adjustment
adjusted_output = adjust_pauses_for_hf_pipeline_output(raw_output)
# Format output with timestamps
formatted_text = ""
for chunk in adjusted_output["chunks"]:
start = chunk["timestamp"][0]
text = chunk["text"]
formatted_text += f"[{start:.2f}] {text}\n"
return html_embed_str, formatted_text
# Gradio interface setup
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="CrisperWhisper: Transcribe Audio as it is",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="CrisperWhisper: Transcribe Audio as it is",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
],
outputs=["html", "text"],
title="CrisperWhisper: Transcribe Audio as it is",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
# Combine interfaces into a tabbed layout
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
# Launch the app
demo.queue().launch()