Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,490 Bytes
5d52c32 6c226f9 8e787d3 6c226f9 d790c0b 88183ad 9db60e1 6c226f9 9db60e1 92ea310 afb301f 9d6fa91 66efbc3 d790c0b 6c226f9 9db60e1 6c226f9 9db60e1 6c226f9 9db60e1 6c226f9 92ea310 9db60e1 6c226f9 9db60e1 6c226f9 9db60e1 5d52c32 3c0cd8e 9db60e1 6c226f9 9db60e1 6c226f9 9db60e1 d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 9db60e1 5d52c32 66efbc3 6c226f9 66efbc3 d790c0b 6c226f9 b97a3c2 0a7fcda 9db60e1 6c226f9 9db60e1 6c226f9 3ce82e9 3c0cd8e afb301f 3c0cd8e 3ce82e9 6c226f9 afb301f 6c226f9 b95b5ca 6c226f9 7097513 3ce82e9 7097513 6c226f9 afb301f 6c226f9 b95b5ca 6c226f9 9db60e1 6c226f9 3c0cd8e 6c226f9 9db60e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time
# Environment and model configuration
hf_token = os.getenv('HF_TOKEN')
MODEL_NAME = "nyrahealth/CrisperWhisper"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
# Device setup
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Timestamp adjustment function
def adjust_pauses_for_hf_pipeline_output(pipeline_output, split_threshold=0.12):
"""
Adjust pause timings by distributing pauses up to the threshold evenly between adjacent words.
"""
adjusted_chunks = pipeline_output["chunks"].copy()
for i in range(len(adjusted_chunks) - 1):
current_chunk = adjusted_chunks[i]
next_chunk = adjusted_chunks[i + 1]
current_start, current_end = current_chunk["timestamp"]
next_start, next_end = next_chunk["timestamp"]
pause_duration = next_start - current_end
if pause_duration > 0:
if pause_duration > split_threshold:
distribute = split_threshold / 2
else:
distribute = pause_duration / 2
# Adjust current chunk end time
adjusted_chunks[i]["timestamp"] = (current_start, current_end + distribute)
# Adjust next chunk start time
adjusted_chunks[i + 1]["timestamp"] = (next_start - distribute, next_end)
pipeline_output["chunks"] = adjusted_chunks
return pipeline_output
# Initialize pipeline
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
token=hf_token,
torch_dtype=torch_dtype,
chunk_length_s=30,
device=device,
return_timestamps='word', # Enable word-level timestamps
)
# Transcribe function for microphone and file inputs
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
# Get full pipeline output
raw_output = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps='word'
)
# Apply timestamp adjustment
adjusted_output = adjust_pauses_for_hf_pipeline_output(raw_output)
# Format output with timestamps
formatted_text = ""
for chunk in adjusted_output["chunks"]:
start = chunk["timestamp"][0]
text = chunk["text"]
formatted_text += f"[{start:.2f}] {text}\n"
return formatted_text
# YouTube HTML embed function
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
# YouTube audio download function
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
# Transcribe function for YouTube inputs
@spaces.GPU
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
# Get full pipeline output
raw_output = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps='word'
)
# Apply timestamp adjustment
adjusted_output = adjust_pauses_for_hf_pipeline_output(raw_output)
# Format output with timestamps
formatted_text = ""
for chunk in adjusted_output["chunks"]:
start = chunk["timestamp"][0]
text = chunk["text"]
formatted_text += f"[{start:.2f}] {text}\n"
return html_embed_str, formatted_text
# Gradio interface setup
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="CrisperWhisper: Transcribe Audio as it is",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="CrisperWhisper: Transcribe Audio as it is",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
],
outputs=["html", "text"],
title="CrisperWhisper: Transcribe Audio as it is",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
# Combine interfaces into a tabbed layout
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
# Launch the app
demo.queue().launch() |