File size: 7,490 Bytes
5d52c32
6c226f9
 
8e787d3
6c226f9
d790c0b
 
88183ad
9db60e1
6c226f9
9db60e1
92ea310
afb301f
9d6fa91
66efbc3
d790c0b
6c226f9
9db60e1
6c226f9
9db60e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c226f9
9db60e1
6c226f9
 
 
92ea310
9db60e1
6c226f9
 
9db60e1
6c226f9
 
9db60e1
5d52c32
3c0cd8e
 
 
9db60e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c226f9
9db60e1
6c226f9
 
 
 
 
 
 
 
9db60e1
d790c0b
 
3c0cd8e
d790c0b
 
 
 
3c0cd8e
d790c0b
 
 
3c0cd8e
d790c0b
 
 
 
 
3c0cd8e
d790c0b
 
 
 
3c0cd8e
d790c0b
3c0cd8e
d790c0b
 
 
 
 
 
9db60e1
5d52c32
66efbc3
6c226f9
66efbc3
d790c0b
 
 
 
 
6c226f9
b97a3c2
 
0a7fcda
9db60e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c226f9
9db60e1
6c226f9
 
 
 
 
3ce82e9
 
3c0cd8e
 
afb301f
3c0cd8e
 
 
 
 
 
 
 
 
 
 
3ce82e9
 
6c226f9
 
afb301f
6c226f9
b95b5ca
6c226f9
 
 
 
 
 
 
 
7097513
3ce82e9
 
7097513
6c226f9
afb301f
6c226f9
b95b5ca
 
6c226f9
 
 
 
 
9db60e1
6c226f9
3c0cd8e
6c226f9
9db60e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time

# Environment and model configuration
hf_token = os.getenv('HF_TOKEN')
MODEL_NAME = "nyrahealth/CrisperWhisper"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

# Device setup
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Timestamp adjustment function
def adjust_pauses_for_hf_pipeline_output(pipeline_output, split_threshold=0.12):
    """
    Adjust pause timings by distributing pauses up to the threshold evenly between adjacent words.
    """
    adjusted_chunks = pipeline_output["chunks"].copy()

    for i in range(len(adjusted_chunks) - 1):
        current_chunk = adjusted_chunks[i]
        next_chunk = adjusted_chunks[i + 1]

        current_start, current_end = current_chunk["timestamp"]
        next_start, next_end = next_chunk["timestamp"]
        pause_duration = next_start - current_end

        if pause_duration > 0:
            if pause_duration > split_threshold:
                distribute = split_threshold / 2
            else:
                distribute = pause_duration / 2

            # Adjust current chunk end time
            adjusted_chunks[i]["timestamp"] = (current_start, current_end + distribute)
            # Adjust next chunk start time
            adjusted_chunks[i + 1]["timestamp"] = (next_start - distribute, next_end)
    
    pipeline_output["chunks"] = adjusted_chunks
    return pipeline_output

# Initialize pipeline
pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    token=hf_token,
    torch_dtype=torch_dtype,
    chunk_length_s=30,
    device=device,
    return_timestamps='word',  # Enable word-level timestamps
)

# Transcribe function for microphone and file inputs
@spaces.GPU
def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    
    # Get full pipeline output
    raw_output = pipe(
        inputs, 
        batch_size=BATCH_SIZE, 
        generate_kwargs={"task": task}, 
        return_timestamps='word'
    )
    
    # Apply timestamp adjustment
    adjusted_output = adjust_pauses_for_hf_pipeline_output(raw_output)
    
    # Format output with timestamps
    formatted_text = ""
    for chunk in adjusted_output["chunks"]:
        start = chunk["timestamp"][0]
        text = chunk["text"]
        formatted_text += f"[{start:.2f}] {text}\n"
    
    return formatted_text

# YouTube HTML embed function
def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

# YouTube audio download function
def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))

# Transcribe function for YouTube inputs
@spaces.GPU
def yt_transcribe(yt_url, task, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    # Get full pipeline output
    raw_output = pipe(
        inputs,
        batch_size=BATCH_SIZE,
        generate_kwargs={"task": task},
        return_timestamps='word'
    )
    
    # Apply timestamp adjustment
    adjusted_output = adjust_pauses_for_hf_pipeline_output(raw_output)
    
    # Format output with timestamps
    formatted_text = ""
    for chunk in adjusted_output["chunks"]:
        start = chunk["timestamp"][0]
        text = chunk["text"]
        formatted_text += f"[{start:.2f}] {text}\n"
    
    return html_embed_str, formatted_text

# Gradio interface setup
demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="CrisperWhisper: Transcribe Audio as it is",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="CrisperWhisper: Transcribe Audio as it is",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
    ],
    outputs=["html", "text"],
    title="CrisperWhisper: Transcribe Audio as it is",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
        f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

# Combine interfaces into a tabbed layout
with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

# Launch the app
demo.queue().launch()