Kaushik066's picture
Update app.py
81a4855 verified
raw
history blame
6.43 kB
# Transformers and its models
import transformers
# For Image Processing
from transformers import ViTImageProcessor
# For Model
from transformers import ViTModel, ViTConfig, pipeline
# For data augmentation
from torchvision import transforms, datasets
# For GPU
from transformers import set_seed
from torch.optim import AdamW
from accelerate import Accelerator, notebook_launcher
# For Data Loaders
import datasets
from torch.utils.data import Dataset, DataLoader
# For Display
#from tqdm.notebook import tqdm
# Other Generic Libraries
import torch
import PIL
import os
import streamlit as st
import gc
from glob import glob
import shutil
import pandas as pd
import numpy as np
#import matplotlib.pyplot as plt
from io import BytesIO
import torch.nn.functional as F
# Set the device (GPU or CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialse Globle Variables
MODEL_TRANSFORMER = 'google/vit-base-patch16-224'
BATCH_SIZE = 8
# Set Paths
data_path = 'employees'
model_path = 'vit_pytorch_GPU_1.pt'
webcam_path = 'captured_image.jpg'
# Set Title
st.title("Employee Attendance System")
#pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# Define Image Processor
image_processor_prod = ViTImageProcessor.from_pretrained(MODEL_TRANSFORMER, attn_implementation="sdpa", torch_dtype=torch.float16)
# Define ML Model
class FaceEmbeddingModel(torch.nn.Module):
def __init__(self, model_name, embedding_size):
super(FaceEmbeddingModel, self).__init__()
self.config = ViTConfig.from_pretrained(model_name, id2label=idx_to_label, label2id=label_to_idx, return_dict=True)
self.backbone = ViTModel.from_pretrained(model_name, config=self.config) # Load ViT model
self.fc = torch.nn.Linear(self.backbone.config.hidden_size, embedding_size) # Convert to 512D feature vector
def forward(self, images):
x = self.backbone(images).last_hidden_state[:, 0] # Extract embeddings
x = self.fc(x) # Convert to 512D embedding
return torch.nn.functional.normalize(x) # Normalize for cosine similarity
# Load the model
model_pretrained = torch.load(model_path, map_location=device, weights_only=False)
# Define the ML model - Evaluation function
def prod_function(transformer_model, prod_dl, prod_data):
# Initialize accelerator
accelerator = Accelerator()
# to INFO for the main process only.
if accelerator.is_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# The seed need to be set before we instantiate the model, as it will determine the random head.
set_seed(42)
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method.
accelerated_model, acclerated_prod_dl, acclerated_prod_data = accelerator.prepare(transformer_model, prod_dl, prod_data)
# Evaluate at the end of the epoch
accelerated_model.eval()
# Find Embedding of the image to be evaluated
emb_prod = accelerated_model(acclerated_prod_data)
prod_preds = []
for batch in acclerated_prod_dl:
with torch.no_grad():
emb = accelerated_model(**batch)
distance = F.pairwise_distance(emb, emb_prod)
prod_preds.append(distance)
return prod_preds
# Creation of Dataloader
class CustomDatasetProd(Dataset):
def __init__(self, pixel_values):
self.pixel_values = pixel_values
def __len__(self):
return len(self.pixel_values)
def __getitem__(self, idx):
item = {
'pixel_values': self.pixel_values[idx].squeeze(0),
}
return item
# Creation of Dataset
class CreateDatasetProd():
def __init__(self, image_processor):
super().__init__()
self.image_processor = image_processor
# Define a transformation pipeline
self.transform_prod = transforms.v2.Compose([
transforms.v2.ToImage(),
transforms.v2.ToDtype(torch.uint8, scale=False)
])
def get_pixels(self, img_paths):
pixel_values = []
for path in img_paths:
# Read and process Images
img = PIL.Image.open(path)
img = self.transform_prod(img)
# Scaling the video to ML model's desired format
img = self.image_processor(img, return_tensors='pt') #, input_data_format='channels_first')
pixel_values.append(img['pixel_values'].squeeze(0))
# Force garbage collection
del img
gc.collect()
return pixel_values
def create_dataset(self, image_paths):
pixel_values = torch.stack(self.get_pixels(image_paths))
return CustomDatasetProd(pixel_values=pixel_values)
# Read images from directory
image_paths = []
image_file = glob(os.path.join(data_path, '*.jpg'))
#st.write(image_file)
image_paths.extend(image_file)
#st.write('input path size:', len(image_paths))
#st.write(image_paths)
# Create DataLoader for Employees image
dataset_prod_obj = CreateDatasetProd(image_processor_prod)
prod_ds = dataset_prod_obj.create_dataset(image_paths)
prod_dl = DataLoader(prod_ds, batch_size=BATCH_SIZE)
# Testing the dataloader
#prod_inputs = next(iter(prod_dl))
#st.write(prod_inputs['pixel_values'].shape)
# Read image from Camera
enable = st.checkbox("Enable camera")
picture = st.camera_input("Take a picture", disabled=not enable)
if picture is not None:
img_bytes = picture.getvalue()
img = PIL.Image.open(img_bytes)
img.save(webcam_path, "JPEG")
st.write('Image saved as:',webcam_path)
# Create DataLoader for Webcam Image
webcam_ds = dataset_prod_obj.create_dataset(webcam_path)
webcam_dl = DataLoader(webcam_ds, batch_size=BATCH_SIZE)
# Run the predictions
prediction = prod_function(model_pretrained, prod_dl, webcam_dl)
predictions = torch.cat(prediction, 0).to('cpu')
match_idx = torch.argmin(predictions)
# Display the results
if predictions[match_idx] <= 0.3:
st.write('Welcome: ',image_paths[match_idx].split('/')[-1].split('.')[0])
else:
st.write("Match not found")