File size: 6,426 Bytes
9ca0a51
 
 
 
 
 
 
a112e6c
9ca0a51
 
 
 
 
 
 
 
 
 
 
 
 
 
66f68c7
9ca0a51
 
743f73f
9ca0a51
c336617
8775ba7
9ca0a51
 
 
c336617
 
d2aa485
07387a5
9ca0a51
 
b15f8f4
 
 
9ca0a51
 
 
 
b15f8f4
 
 
81a4855
b15f8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f61d1e
b15f8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f68c7
b15f8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f68c7
b15f8f4
 
 
 
 
 
 
 
8775ba7
b15f8f4
 
 
 
8775ba7
b15f8f4
8775ba7
b15f8f4
 
 
9ca0a51
b15f8f4
 
 
 
66f68c7
 
8775ba7
b15f8f4
 
 
 
8775ba7
b15f8f4
3accedb
 
8775ba7
66f68c7
 
81a4855
 
 
 
 
 
 
66f68c7
81a4855
66f68c7
3accedb
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Transformers and its models
import transformers

# For Image Processing
from transformers import ViTImageProcessor

# For Model
from transformers import ViTModel, ViTConfig, pipeline

# For data augmentation
from torchvision import transforms, datasets

# For GPU
from transformers import set_seed
from torch.optim import AdamW
from accelerate import Accelerator, notebook_launcher

# For Data Loaders
import datasets
from torch.utils.data import Dataset, DataLoader

# For Display
#from tqdm.notebook import tqdm

# Other Generic Libraries
import torch
import PIL
import os
import streamlit as st
import gc
from glob import glob
import shutil
import pandas as pd
import numpy as np
#import matplotlib.pyplot as plt
from io import BytesIO
import torch.nn.functional as F

# Set the device (GPU or CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Initialse Globle Variables
MODEL_TRANSFORMER = 'google/vit-base-patch16-224'
BATCH_SIZE = 8

# Set Paths
data_path = 'employees'
model_path = 'vit_pytorch_GPU_1.pt'
webcam_path = 'captured_image.jpg'

# Set Title
st.title("Employee Attendance System")
#pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

# Define Image Processor
image_processor_prod = ViTImageProcessor.from_pretrained(MODEL_TRANSFORMER, attn_implementation="sdpa", torch_dtype=torch.float16)

# Define ML Model
class FaceEmbeddingModel(torch.nn.Module):
    def __init__(self, model_name, embedding_size):
        super(FaceEmbeddingModel, self).__init__()
        self.config = ViTConfig.from_pretrained(model_name, id2label=idx_to_label, label2id=label_to_idx, return_dict=True)
        self.backbone = ViTModel.from_pretrained(model_name, config=self.config)  # Load ViT model
        self.fc = torch.nn.Linear(self.backbone.config.hidden_size, embedding_size) # Convert to 512D feature vector

    def forward(self, images):
        x = self.backbone(images).last_hidden_state[:, 0]  # Extract embeddings
        x = self.fc(x)  # Convert to 512D embedding
        return torch.nn.functional.normalize(x)  # Normalize for cosine similarity

# Load the model
model_pretrained = torch.load(model_path, map_location=device, weights_only=False)

# Define the ML model - Evaluation function
def prod_function(transformer_model, prod_dl, prod_data):
    # Initialize accelerator
    accelerator = Accelerator()

    # to INFO for the main process only.
    if accelerator.is_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # The seed need to be set before we instantiate the model, as it will determine the random head.
    set_seed(42)

    # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method.
    accelerated_model, acclerated_prod_dl, acclerated_prod_data = accelerator.prepare(transformer_model, prod_dl, prod_data)

    # Evaluate at the end of the epoch
    accelerated_model.eval()

    # Find Embedding of the image to be evaluated
    emb_prod = accelerated_model(acclerated_prod_data)

    prod_preds = []

    for batch in acclerated_prod_dl:
        with torch.no_grad():
            emb = accelerated_model(**batch)
        distance = F.pairwise_distance(emb, emb_prod)

        prod_preds.append(distance)
    return prod_preds

# Creation of Dataloader
class CustomDatasetProd(Dataset):
    def __init__(self, pixel_values):
        self.pixel_values = pixel_values

    def __len__(self):
        return len(self.pixel_values)

    def __getitem__(self, idx):
        item = {
            'pixel_values': self.pixel_values[idx].squeeze(0),
        }
        return item
        
# Creation of Dataset       
class CreateDatasetProd():
    def __init__(self, image_processor):
        super().__init__()
        self.image_processor = image_processor
        # Define a transformation pipeline
        self.transform_prod = transforms.v2.Compose([
                                    transforms.v2.ToImage(),
                                    transforms.v2.ToDtype(torch.uint8, scale=False)
                                ])

    def get_pixels(self, img_paths):
        pixel_values = []
        for path in img_paths:
            # Read and process Images
            img = PIL.Image.open(path)
            img = self.transform_prod(img)

            # Scaling the video to ML model's desired format
            img = self.image_processor(img, return_tensors='pt') #, input_data_format='channels_first')

            pixel_values.append(img['pixel_values'].squeeze(0))

            # Force garbage collection
            del img
            gc.collect()
        return pixel_values

    def create_dataset(self, image_paths):

        pixel_values = torch.stack(self.get_pixels(image_paths))
        return CustomDatasetProd(pixel_values=pixel_values)
        
# Read images from directory
image_paths = []
image_file = glob(os.path.join(data_path, '*.jpg'))
#st.write(image_file)
image_paths.extend(image_file)
#st.write('input path size:', len(image_paths))
#st.write(image_paths)

# Create DataLoader for Employees image
dataset_prod_obj = CreateDatasetProd(image_processor_prod)
prod_ds = dataset_prod_obj.create_dataset(image_paths)
prod_dl = DataLoader(prod_ds, batch_size=BATCH_SIZE)

# Testing the dataloader
#prod_inputs = next(iter(prod_dl))
#st.write(prod_inputs['pixel_values'].shape) 

# Read image from Camera
enable = st.checkbox("Enable camera")
picture = st.camera_input("Take a picture", disabled=not enable)
if picture is not None:
    img_bytes = picture.getvalue()
    img = PIL.Image.open(img_bytes)
    img.save(webcam_path, "JPEG")
    st.write('Image saved as:',webcam_path)

    # Create DataLoader for Webcam Image
    webcam_ds = dataset_prod_obj.create_dataset(webcam_path)
    webcam_dl = DataLoader(webcam_ds, batch_size=BATCH_SIZE)
    
    # Run the predictions
    prediction = prod_function(model_pretrained, prod_dl, webcam_dl)
    predictions = torch.cat(prediction, 0).to('cpu')
    match_idx = torch.argmin(predictions)

    # Display the results
    if predictions[match_idx] <= 0.3:
      st.write('Welcome: ',image_paths[match_idx].split('/')[-1].split('.')[0])
    else:
      st.write("Match not found")