File size: 639 Bytes
5ce3bff
 
52772c0
5ce3bff
 
52772c0
5ce3bff
 
 
52772c0
5ce3bff
 
e5910e5
ef3a189
256bd41
e5910e5
ef3a189
5ce3bff
 
52772c0
ef3a189
5ce3bff
 
52772c0
587af10
e5910e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Written On: 10 Feb 2025
# Last Updaate: 10 Feb 2025

#from transformers.utils import logging
#logging.set_verbosity_error()

#import warnings
#warnings.filterwarnings("ignore", 
#                        message="Using the model-agnostic default `max_length`")

import gradio as gr
from transformers import pipeline

pipe = pipeline("image-to-text",
                model="Salesforce/blip-image-captioning-base")

def launch(input):
    out = pipe(input)
    return out[0]['generated_text']

iface = gr.Interface(launch,
                     inputs=gr.Image(type='pil'),
                     outputs="text")

iface.launch(share=True)