Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,26 @@
|
|
1 |
-
|
2 |
-
#
|
3 |
-
# Using Neural Networks and Tensorflow
|
4 |
-
# Prediction using Gradio on Hugging Face
|
5 |
-
# Written by: Prakash R. Kota
|
6 |
-
# Written on: 12 Feb 2025
|
7 |
-
# Last update: 12 Feb 2025
|
8 |
|
9 |
-
#
|
10 |
-
#
|
11 |
-
# https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
|
12 |
-
# With Header:
|
13 |
-
# https://www.kaggle.com/code/nancyalaswad90/analysis-breast-cancer-prediction-dataset
|
14 |
-
#
|
15 |
-
# Input Data Format for Gradio must be in the above header format with 30 features
|
16 |
-
# The header has 32 features listed, but ignore the first 2 header columns
|
17 |
-
#+--------------------------------------------------------------------------------------------+
|
18 |
|
19 |
-
import
|
20 |
-
|
21 |
-
|
22 |
-
import joblib
|
23 |
-
|
24 |
-
|
25 |
-
# Load the trained model
|
26 |
-
model = tf.keras.models.load_model("PRK_BC_NN_Model.keras")
|
27 |
-
|
28 |
-
# Load the saved Scaler
|
29 |
-
scaler = joblib.load("PRK_BC_NN_Scaler.pkl")
|
30 |
-
|
31 |
-
# Function to process input and make predictions
|
32 |
-
def predict(input_text):
|
33 |
-
# Convert input string into a NumPy array of shape (1, 30)
|
34 |
-
input_data = np.array([list(map(float, input_text.split(",")))])
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
return "Error: Please enter exactly 30 numerical values separated by commas."
|
39 |
-
|
40 |
-
# Transform the input data using the loded scaler
|
41 |
-
input_data_scaled = scaler.transform(input_data)
|
42 |
-
|
43 |
-
# Make a prediction
|
44 |
-
prediction = model.predict(input_data_scaled)
|
45 |
-
|
46 |
-
# Convert prediction to a binary outcome (assuming classification)
|
47 |
-
result = "Malignant" if prediction[0][0] > 0.5 else "Benign"
|
48 |
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
inputs=gr.Textbox(label="Enter 30 feature values, comma-separated"),
|
58 |
-
outputs="text",
|
59 |
-
title="Breast Cancer Prediction",
|
60 |
-
description="Enter 30 numerical feature values separated by commas to predict whether the biopsy is Malignant or Benign."
|
61 |
-
)
|
62 |
|
63 |
-
|
64 |
-
interface.launch()
|
65 |
|
|
|
1 |
+
# Written On: 10 Feb 2025
|
2 |
+
# Last Updaate: 10 Feb 2025
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
#from transformers.utils import logging
|
5 |
+
#logging.set_verbosity_error()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
#import warnings
|
8 |
+
#warnings.filterwarnings("ignore",
|
9 |
+
# message="Using the model-agnostic default `max_length`")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
import gradio as gr
|
12 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
pipe = pipeline("image-to-text",
|
15 |
+
model="./models/Salesforce/blip-image-captioning-base")
|
16 |
|
17 |
+
def launch(input):
|
18 |
+
out = pipe(input)
|
19 |
+
return out[0]['generated_text']
|
20 |
|
21 |
+
iface = gr.Interface(launch,
|
22 |
+
inputs=gr.Image(type='pil'),
|
23 |
+
outputs="text")
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
iface.launch()
|
|
|
26 |
|