Spaces:
Sleeping
Sleeping
from transformers import AutoModel | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import torch.nn as nn | |
import torch | |
# Number of labels (update if different) | |
NUM_LABELS = 4 | |
class SciBertClassificationModel(nn.Module): | |
def __init__(self, model_path="allenai/scibert_scivocab_uncased", freeze_weights=True): | |
super(SciBertClassificationModel, self).__init__() | |
if model_path == "allenai/scibert_scivocab_uncased": | |
self.base_model = AutoModel.from_pretrained(model_path) | |
else: | |
pytorch_model_path = hf_hub_download( | |
repo_id=model_path, | |
repo_type="model", | |
filename="model.safetensors" | |
) | |
state_dict = load_file(pytorch_model_path) | |
filtered_state_dict = { | |
k.replace("base_model.", ""): v | |
for k, v in state_dict.items() | |
if not k.startswith("classifier.") | |
} | |
self.base_model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased", state_dict=filtered_state_dict) | |
# For push to hub. | |
self.config = self.base_model.config | |
# Freeze the base model's weights | |
if freeze_weights: | |
for param in self.base_model.parameters(): | |
param.requires_grad = False | |
# Add a classification head | |
self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS) | |
def forward(self, input_ids, attention_mask, labels=None): | |
with torch.no_grad(): # No gradients for the base model | |
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask) | |
# Ensure the tensor is contiguous before passing to the classifier | |
# cls_token_representation = outputs.last_hidden_state[:, 0, :].contiguous() | |
# logits = self.classifier(cls_token_representation) | |
# Sum token representations | |
summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over the sequence length (dim=1) | |
logits = self.classifier(summed_representation) # Pass the summed representation to the classifier | |
loss = None | |
if labels is not None: | |
loss_fn = nn.BCEWithLogitsLoss() | |
loss = loss_fn(logits, labels.float()) | |
return {"loss": loss, "logits": logits} | |
def state_dict(self, *args, **kwargs): | |
# Get the state dictionary | |
state_dict = super().state_dict(*args, **kwargs) | |
# Ensure all tensors are contiguous | |
for key, tensor in state_dict.items(): | |
if isinstance(tensor, torch.Tensor) and not tensor.is_contiguous(): | |
state_dict[key] = tensor.contiguous() | |
return state_dict | |