ppak10's picture
Adds notebook and setup for testing models.
1b74e0a
from transformers import AutoModel
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import torch.nn as nn
import torch
# Number of labels (update if different)
NUM_LABELS = 4
class SciBertClassificationModel(nn.Module):
def __init__(self, model_path="allenai/scibert_scivocab_uncased", freeze_weights=True):
super(SciBertClassificationModel, self).__init__()
if model_path == "allenai/scibert_scivocab_uncased":
self.base_model = AutoModel.from_pretrained(model_path)
else:
pytorch_model_path = hf_hub_download(
repo_id=model_path,
repo_type="model",
filename="model.safetensors"
)
state_dict = load_file(pytorch_model_path)
filtered_state_dict = {
k.replace("base_model.", ""): v
for k, v in state_dict.items()
if not k.startswith("classifier.")
}
self.base_model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased", state_dict=filtered_state_dict)
# For push to hub.
self.config = self.base_model.config
# Freeze the base model's weights
if freeze_weights:
for param in self.base_model.parameters():
param.requires_grad = False
# Add a classification head
self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS)
def forward(self, input_ids, attention_mask, labels=None):
with torch.no_grad(): # No gradients for the base model
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
# Ensure the tensor is contiguous before passing to the classifier
# cls_token_representation = outputs.last_hidden_state[:, 0, :].contiguous()
# logits = self.classifier(cls_token_representation)
# Sum token representations
summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over the sequence length (dim=1)
logits = self.classifier(summed_representation) # Pass the summed representation to the classifier
loss = None
if labels is not None:
loss_fn = nn.BCEWithLogitsLoss()
loss = loss_fn(logits, labels.float())
return {"loss": loss, "logits": logits}
def state_dict(self, *args, **kwargs):
# Get the state dictionary
state_dict = super().state_dict(*args, **kwargs)
# Ensure all tensors are contiguous
for key, tensor in state_dict.items():
if isinstance(tensor, torch.Tensor) and not tensor.is_contiguous():
state_dict[key] = tensor.contiguous()
return state_dict