from transformers import AutoModel from huggingface_hub import hf_hub_download from safetensors.torch import load_file import torch.nn as nn import torch # Number of labels (update if different) NUM_LABELS = 4 class SciBertClassificationModel(nn.Module): def __init__(self, model_path="allenai/scibert_scivocab_uncased", freeze_weights=True): super(SciBertClassificationModel, self).__init__() if model_path == "allenai/scibert_scivocab_uncased": self.base_model = AutoModel.from_pretrained(model_path) else: pytorch_model_path = hf_hub_download( repo_id=model_path, repo_type="model", filename="model.safetensors" ) state_dict = load_file(pytorch_model_path) filtered_state_dict = { k.replace("base_model.", ""): v for k, v in state_dict.items() if not k.startswith("classifier.") } self.base_model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased", state_dict=filtered_state_dict) # For push to hub. self.config = self.base_model.config # Freeze the base model's weights if freeze_weights: for param in self.base_model.parameters(): param.requires_grad = False # Add a classification head self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS) def forward(self, input_ids, attention_mask, labels=None): with torch.no_grad(): # No gradients for the base model outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask) # Ensure the tensor is contiguous before passing to the classifier # cls_token_representation = outputs.last_hidden_state[:, 0, :].contiguous() # logits = self.classifier(cls_token_representation) # Sum token representations summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over the sequence length (dim=1) logits = self.classifier(summed_representation) # Pass the summed representation to the classifier loss = None if labels is not None: loss_fn = nn.BCEWithLogitsLoss() loss = loss_fn(logits, labels.float()) return {"loss": loss, "logits": logits} def state_dict(self, *args, **kwargs): # Get the state dictionary state_dict = super().state_dict(*args, **kwargs) # Ensure all tensors are contiguous for key, tensor in state_dict.items(): if isinstance(tensor, torch.Tensor) and not tensor.is_contiguous(): state_dict[key] = tensor.contiguous() return state_dict