ppak10's picture
Adds notebook and setup for testing models.
1b74e0a
import torch.nn as nn
import torch
from transformers import AutoModel
NUM_LABELS = 4
# Model with frozen LLaMA weights
class LlamaClassificationModel(nn.Module):
def __init__(self, model_path = "meta-llama/Llama-3.2-1B", freeze_weights = True):
super(LlamaClassificationModel, self).__init__()
self.base_model = AutoModel.from_pretrained(model_path)
# For push to hub.
self.config = self.base_model.config
# Freeze the base model's weights
if freeze_weights:
for param in self.base_model.parameters():
param.requires_grad = False
# Add a classification head
self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS)
def forward(self, input_ids, attention_mask, labels=None):
with torch.no_grad(): # No gradients for the base model
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
# Sum hidden states over the sequence dimension
summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over sequence length
logits = self.classifier(summed_representation) # Pass the summed representation to the classifier
loss = None
if labels is not None:
loss_fn = nn.BCEWithLogitsLoss()
loss = loss_fn(logits, labels.float())
return {"loss": loss, "logits": logits}