import torch.nn as nn import torch from transformers import AutoModel NUM_LABELS = 4 # Model with frozen LLaMA weights class LlamaClassificationModel(nn.Module): def __init__(self, model_path = "meta-llama/Llama-3.2-1B", freeze_weights = True): super(LlamaClassificationModel, self).__init__() self.base_model = AutoModel.from_pretrained(model_path) # For push to hub. self.config = self.base_model.config # Freeze the base model's weights if freeze_weights: for param in self.base_model.parameters(): param.requires_grad = False # Add a classification head self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS) def forward(self, input_ids, attention_mask, labels=None): with torch.no_grad(): # No gradients for the base model outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask) # Sum hidden states over the sequence dimension summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over sequence length logits = self.classifier(summed_representation) # Pass the summed representation to the classifier loss = None if labels is not None: loss_fn = nn.BCEWithLogitsLoss() loss = loss_fn(logits, labels.float()) return {"loss": loss, "logits": logits}