Spaces:
Sleeping
Sleeping
Prueba con modelo de hf codigo de chatgpt
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ Estructura del c贸digo:
|
|
20 |
7. Inicia la interfaz de usuario..
|
21 |
"""
|
22 |
from langchain.vectorstores import Chroma
|
|
|
23 |
from langchain_chroma import Chroma
|
24 |
from tqdm.auto import tqdm
|
25 |
#from chromadb.utils import embedding_functions
|
@@ -48,10 +49,11 @@ if __name__=="__main__":
|
|
48 |
textos.extend(chunks)
|
49 |
|
50 |
# Generaci贸n de embeddings y almacenamiento en base de datos ChromaDB
|
51 |
-
embeddings =
|
52 |
persist_directory = "./persist_directory"
|
53 |
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings.embed_documents)
|
54 |
-
vectorstore =
|
|
|
55 |
print("Vectorizado terminado")
|
56 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
57 |
print("Carga del modelo")
|
|
|
20 |
7. Inicia la interfaz de usuario..
|
21 |
"""
|
22 |
from langchain.vectorstores import Chroma
|
23 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
24 |
from langchain_chroma import Chroma
|
25 |
from tqdm.auto import tqdm
|
26 |
#from chromadb.utils import embedding_functions
|
|
|
49 |
textos.extend(chunks)
|
50 |
|
51 |
# Generaci贸n de embeddings y almacenamiento en base de datos ChromaDB
|
52 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2")
|
53 |
persist_directory = "./persist_directory"
|
54 |
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings.embed_documents)
|
55 |
+
vectorstore = Chroma.from_documents(
|
56 |
+
documentos_fragmentados, embeddings, persist_directory="./chroma_db")
|
57 |
print("Vectorizado terminado")
|
58 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
59 |
print("Carga del modelo")
|