Spaces:
Sleeping
Sleeping
Prueba 2 para arreglar tenant
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ Estructura del c贸digo:
|
|
19 |
6. Carga el modelo de machine learning.
|
20 |
7. Inicia la interfaz de usuario..
|
21 |
"""
|
22 |
-
|
23 |
from langchain_chroma import Chroma
|
24 |
from tqdm.auto import tqdm
|
25 |
#from chromadb.utils import embedding_functions
|
@@ -50,8 +50,7 @@ if __name__=="__main__":
|
|
50 |
# Generaci贸n de embeddings y almacenamiento en base de datos ChromaDB
|
51 |
embeddings = EmbeddingGen("sentence-transformers/all-MiniLM-L12-v2")
|
52 |
persist_directory = "./persist_directory"
|
53 |
-
|
54 |
-
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings.embed_documents, client=client)
|
55 |
vectorstore = db.from_documents(list(tqdm(textos[:10], desc="Procesando documentos", unit="doc")), embeddings)
|
56 |
print("Vectorizado terminado")
|
57 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
|
|
19 |
6. Carga el modelo de machine learning.
|
20 |
7. Inicia la interfaz de usuario..
|
21 |
"""
|
22 |
+
from langchain.vectorstores import Chroma
|
23 |
from langchain_chroma import Chroma
|
24 |
from tqdm.auto import tqdm
|
25 |
#from chromadb.utils import embedding_functions
|
|
|
50 |
# Generaci贸n de embeddings y almacenamiento en base de datos ChromaDB
|
51 |
embeddings = EmbeddingGen("sentence-transformers/all-MiniLM-L12-v2")
|
52 |
persist_directory = "./persist_directory"
|
53 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings.embed_documents)
|
|
|
54 |
vectorstore = db.from_documents(list(tqdm(textos[:10], desc="Procesando documentos", unit="doc")), embeddings)
|
55 |
print("Vectorizado terminado")
|
56 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|