|
import os |
|
from flask import Flask, jsonify, request, render_template, send_file |
|
import pandas as pd |
|
import torch |
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
from collections import Counter |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
import base64 |
|
from io import BytesIO |
|
|
|
|
|
|
|
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
FILE_PATH = os.path.join(BASE_DIR, "Student_Feedback_Dataset__20_Rows_.csv") |
|
|
|
|
|
|
|
os.environ["HF_HOME"] = "/tmp" |
|
os.environ["TRANSFORMERS_CACHE"] = "/tmp" |
|
os.environ["MPLCONFIGDIR"] = "/tmp" |
|
|
|
|
|
os.makedirs(os.environ["HF_HOME"], exist_ok=True) |
|
os.makedirs(os.environ["TRANSFORMERS_CACHE"], exist_ok=True) |
|
os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True) |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
MODEL_NAME = "philipobiorah/bert-imdb-model" |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
model = BertForSequenceClassification.from_pretrained(MODEL_NAME) |
|
|
|
model.eval() |
|
|
|
|
|
def predict_sentiment(text): |
|
if not text.strip(): |
|
return {"sentiment": "Neutral", "confidence": 0.0} |
|
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)[0] |
|
sentiment_idx = probabilities.argmax().item() |
|
confidence = probabilities[sentiment_idx].item() * 100 |
|
|
|
sentiment_label = "Positive" if sentiment_idx == 1 else "Negative" |
|
|
|
return {"sentiment": sentiment_label, "confidence": round(confidence, 2)} |
|
|
|
@app.route('/') |
|
def upload_file(): |
|
return render_template('upload.html') |
|
|
|
@app.route('/download-sample') |
|
def download_sample(): |
|
if os.path.exists(FILE_PATH): |
|
return send_file(FILE_PATH, as_attachment=True) |
|
else: |
|
return "Error: File not found!", 404 |
|
|
|
@app.route('/analyze_text', methods=['POST']) |
|
def analyze_text(): |
|
text = request.form.get('text', '').strip() |
|
|
|
if not text: |
|
return jsonify({"error": "No text provided!"}), 400 |
|
|
|
result = predict_sentiment(text) |
|
return jsonify(result) |
|
|
|
@app.route('/uploader', methods=['POST']) |
|
def upload_file_post(): |
|
if 'file' not in request.files: |
|
return "Error: No file uploaded!", 400 |
|
|
|
f = request.files['file'] |
|
if f.filename == '': |
|
return "Error: No file selected!", 400 |
|
|
|
try: |
|
data = pd.read_csv(f) |
|
|
|
|
|
if 'review' not in data.columns: |
|
return "Error: CSV file must contain a 'review' column!", 400 |
|
|
|
|
|
results = data['review'].astype(str).apply(predict_sentiment) |
|
data['sentiment'] = results.apply(lambda x: x['sentiment']) |
|
data['confidence'] = results.apply(lambda x: f"{x['confidence']}%") |
|
|
|
|
|
sentiment_counts = data['sentiment'].value_counts().to_dict() |
|
summary = f"Total Reviews: {len(data)}<br>" \ |
|
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \ |
|
f"Negative: {sentiment_counts.get('Negative', 0)}<br>" |
|
|
|
|
|
fig, ax = plt.subplots() |
|
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue']) |
|
ax.set_ylabel('Counts') |
|
ax.set_title('Sentiment Analysis Summary') |
|
|
|
|
|
img = BytesIO() |
|
plt.savefig(img, format='png', bbox_inches='tight') |
|
img.seek(0) |
|
plot_url = base64.b64encode(img.getvalue()).decode('utf8') |
|
plt.close(fig) |
|
|
|
return render_template('result.html', tables=[data.to_html(classes='data')], titles=data.columns.values, summary=summary, plot_url=plot_url) |
|
|
|
except Exception as e: |
|
return f"Error processing file: {str(e)}", 500 |
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0', port=7860, debug=True) |
|
|