import os from flask import Flask, jsonify, request, render_template, send_file import pandas as pd import torch from transformers import BertTokenizer, BertForSequenceClassification from collections import Counter import matplotlib matplotlib.use('Agg') # Prevents GUI issues for Matplotlib import matplotlib.pyplot as plt import base64 from io import BytesIO # Ensure the file exists in the current directory BASE_DIR = os.path.dirname(os.path.abspath(__file__)) FILE_PATH = os.path.join(BASE_DIR, "Student_Feedback_Dataset__20_Rows_.csv") # Fix Permission Issues: Set Writable Directories for Hugging Face & Matplotlib os.environ["HF_HOME"] = "/tmp" os.environ["TRANSFORMERS_CACHE"] = "/tmp" os.environ["MPLCONFIGDIR"] = "/tmp" # Create directories if they don’t exist os.makedirs(os.environ["HF_HOME"], exist_ok=True) os.makedirs(os.environ["TRANSFORMERS_CACHE"], exist_ok=True) os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True) app = Flask(__name__) # Load Model from Hugging Face MODEL_NAME = "philipobiorah/bert-imdb-model" tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = BertForSequenceClassification.from_pretrained(MODEL_NAME) model.eval() # Function to Predict Sentiment + Confidence Score def predict_sentiment(text): if not text.strip(): return {"sentiment": "Neutral", "confidence": 0.0} # Avoid processing empty text inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)[0] # Convert logits to probabilities sentiment_idx = probabilities.argmax().item() # Get predicted class (0 = Negative, 1 = Positive) confidence = probabilities[sentiment_idx].item() * 100 # Convert to percentage sentiment_label = "Positive" if sentiment_idx == 1 else "Negative" return {"sentiment": sentiment_label, "confidence": round(confidence, 2)} @app.route('/') def upload_file(): return render_template('upload.html') @app.route('/download-sample') def download_sample(): if os.path.exists(FILE_PATH): return send_file(FILE_PATH, as_attachment=True) else: return "Error: File not found!", 404 @app.route('/analyze_text', methods=['POST']) def analyze_text(): text = request.form.get('text', '').strip() if not text: return jsonify({"error": "No text provided!"}), 400 # Return JSON error message result = predict_sentiment(text) return jsonify(result) # Return JSON response including confidence score @app.route('/uploader', methods=['POST']) def upload_file_post(): if 'file' not in request.files: return "Error: No file uploaded!", 400 f = request.files['file'] if f.filename == '': return "Error: No file selected!", 400 try: data = pd.read_csv(f) # Ensure 'review' column exists if 'review' not in data.columns: return "Error: CSV file must contain a 'review' column!", 400 # Predict sentiment & confidence for each review results = data['review'].astype(str).apply(predict_sentiment) data['sentiment'] = results.apply(lambda x: x['sentiment']) data['confidence'] = results.apply(lambda x: f"{x['confidence']}%") # Generate summary sentiment_counts = data['sentiment'].value_counts().to_dict() summary = f"Total Reviews: {len(data)}
" \ f"Positive: {sentiment_counts.get('Positive', 0)}
" \ f"Negative: {sentiment_counts.get('Negative', 0)}
" # Generate sentiment plot fig, ax = plt.subplots() ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue']) ax.set_ylabel('Counts') ax.set_title('Sentiment Analysis Summary') # Save plot as an image img = BytesIO() plt.savefig(img, format='png', bbox_inches='tight') img.seek(0) plot_url = base64.b64encode(img.getvalue()).decode('utf8') plt.close(fig) return render_template('result.html', tables=[data.to_html(classes='data')], titles=data.columns.values, summary=summary, plot_url=plot_url) except Exception as e: return f"Error processing file: {str(e)}", 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860, debug=True)