Spaces:
Sleeping
Sleeping
File size: 39,224 Bytes
9297977 8934356 9297977 7443219 9297977 92287cb 0c8faca e20a82b 33771c2 8934356 7443219 446a37d e20a82b 8934356 92287cb 9297977 8934356 33771c2 8934356 33771c2 8934356 33771c2 9297977 33771c2 8934356 758ab80 8934356 758ab80 8934356 412ee33 cd6115e 33771c2 7384066 8934356 6c1fc10 8934356 7384066 8934356 6c1fc10 8934356 6c1fc10 8934356 b4a7d5f 8934356 b4a7d5f 8934356 7384066 8934356 c9620e1 7384066 8934356 c9620e1 8934356 c9620e1 8934356 c9620e1 8934356 c9620e1 b4a7d5f 8934356 c9620e1 8934356 c9620e1 428b349 8934356 33771c2 8934356 2bf1f83 7384288 8934356 9c8ee42 8934356 9c8ee42 8934356 9c8ee42 8934356 2bf1f83 8934356 0a6a508 8934356 2bf1f83 33771c2 cd6115e 7384288 4670145 8934356 412ee33 8934356 6c1fc10 8934356 b4a7d5f 8934356 0a6a508 8934356 0a6a508 8934356 d9a9e78 8934356 0a6a508 8934356 412ee33 cd6115e 8934356 cd6115e 7384288 8934356 9297977 7384288 758ab80 8934356 758ab80 8934356 9297977 8934356 9297977 3390451 8934356 3390451 8934356 f7f1da3 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f 8934356 b4a7d5f ff8256a daca6d7 601d2f9 ff8256a 601d2f9 ff8256a 601d2f9 9297977 8934356 daca6d7 9297977 92287cb 8934356 92287cb 9297977 8934356 6c1fc10 8934356 9297977 8934356 2ce3a78 601d2f9 9297977 601d2f9 9297977 8934356 e6534df 8934356 9297977 ff8256a 9297977 8934356 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
import gradio as gr
import spaces
import pandas as pd
import torch
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
import plotly.graph_objects as go
import logging
import io
from rapidfuzz import fuzz
import time
import os
groq_key = os.environ['groq_key']
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from openpyxl import load_workbook
from openpyxl.utils.dataframe import dataframe_to_rows
import torch.nn.functional as F
import numpy as np
import logging
from typing import List, Set, Tuple
import asyncio
def fuzzy_deduplicate(df, column, threshold=55):
"""Deduplicate rows based on fuzzy matching of text content"""
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class GPUTaskManager:
def __init__(self, max_retries=3, retry_delay=30, cleanup_callback=None):
self.max_retries = max_retries
self.retry_delay = retry_delay
self.cleanup_callback = cleanup_callback
async def run_with_retry(self, task_func, *args, **kwargs):
"""Execute a GPU task with retry logic"""
for attempt in range(self.max_retries):
try:
return await task_func(*args, **kwargs)
except Exception as e:
if "GPU task aborted" in str(e) or "GPU quota" in str(e):
if attempt < self.max_retries - 1:
if self.cleanup_callback:
self.cleanup_callback()
torch.cuda.empty_cache()
await asyncio.sleep(self.retry_delay)
continue
raise
@staticmethod
def batch_process(items, batch_size=3):
"""Split items into smaller batches"""
return [items[i:i + batch_size] for i in range(0, len(items), batch_size)]
@staticmethod
def is_gpu_error(error):
"""Check if an error is GPU-related"""
error_msg = str(error).lower()
return any(msg in error_msg for msg in [
"gpu task aborted",
"gpu quota",
"cuda out of memory",
"device-side assert"
])
class ProcessControl:
def __init__(self):
self.stop_requested = False
def request_stop(self):
self.stop_requested = True
def should_stop(self):
return self.stop_requested
def reset(self):
self.stop_requested = False
class ProcessControl:
def __init__(self):
self.stop_requested = False
self.error = None
def request_stop(self):
self.stop_requested = True
def should_stop(self):
return self.stop_requested
def reset(self):
self.stop_requested = False
self.error = None
def set_error(self, error):
self.error = error
self.stop_requested = True
class EventDetector:
def __init__(self):
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Initializing models on device: {device}")
# Initialize all models
self.initialize_models(device)
# Initialize transformer for declusterization
self.tokenizer_cluster = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
self.model_cluster = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2').to(device)
self.device = device
self.initialized = True
logger.info("All models initialized successfully")
except Exception as e:
logger.error(f"Error in EventDetector initialization: {str(e)}")
raise
def mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def encode_text(self, text):
if pd.isna(text):
text = ""
text = str(text)
encoded_input = self.tokenizer_cluster(text, padding=True, truncation=True, max_length=512, return_tensors='pt').to(self.device)
with torch.no_grad():
model_output = self.model_cluster(**encoded_input)
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
return torch.nn.functional.normalize(sentence_embeddings[0], p=2, dim=0)
@spaces.GPU(duration=20)
def decluster_texts(self, df, text_column, similarity_threshold=0.75, time_threshold=24):
try:
if df.empty:
return df
# Sort by datetime if available
if 'datetime' in df.columns:
df = df.sort_values('datetime')
# Initialize lists and sets for tracking
indices_to_delete = set()
# Process each text
for i in df.index:
if i in indices_to_delete: # Skip if already marked for deletion
continue
text1 = df.loc[i, text_column]
if pd.isna(text1):
continue
text1_embedding = self.encode_text(text1)
current_cluster = []
# Compare with other texts
for j in df.index:
if i == j or j in indices_to_delete: # Skip same text or already marked
continue
text2 = df.loc[j, text_column]
if pd.isna(text2):
continue
# Check time difference if datetime available
if 'datetime' in df.columns:
time_diff = pd.to_datetime(df.loc[j, 'datetime']) - pd.to_datetime(df.loc[i, 'datetime'])
if abs(time_diff.total_seconds() / 3600) > time_threshold:
continue
text2_embedding = self.encode_text(text2)
similarity = torch.dot(text1_embedding, text2_embedding).item()
if similarity >= similarity_threshold:
current_cluster.append(j)
# If we found similar texts, keep the longest one
if current_cluster:
current_cluster.append(i) # Add the current text to cluster
text_lengths = df.loc[current_cluster, text_column].fillna('').str.len()
longest_text_idx = text_lengths.idxmax()
# Mark all except longest for deletion
indices_to_delete.update(set(current_cluster) - {longest_text_idx})
# Return DataFrame without deleted rows
return df.drop(index=list(indices_to_delete))
except Exception as e:
logger.error(f"Declusterization error: {str(e)}")
return df
@spaces.GPU(duration=30)
def initialize_models(self, device):
"""Initialize all models with GPU support"""
# Initialize translation model
self.translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ru-en",
device=device
)
self.rutranslator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-en-ru",
device=device
)
# Initialize sentiment models
self.finbert = pipeline(
"sentiment-analysis",
model="ProsusAI/finbert",
device=device,
truncation=True,
max_length=512
)
self.roberta = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment",
device=device,
truncation=True,
max_length=512
)
self.finbert_tone = pipeline(
"sentiment-analysis",
model="yiyanghkust/finbert-tone",
device=device,
truncation=True,
max_length=512
)
# Initialize MT5 model
self.model_name = "google/mt5-small"
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
legacy=True
)
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
# Initialize Groq
if 'groq_key':
self.groq = ChatOpenAI(
base_url="https://api.groq.com/openai/v1",
model="llama-3.1-70b-versatile",
openai_api_key=groq_key,
temperature=0.0
)
else:
logger.warning("Groq API key not found, impact estimation will be limited")
self.groq = None
@spaces.GPU(duration=20)
def _translate_text(self, text):
"""Translate Russian text to English"""
try:
if not text or not isinstance(text, str):
return ""
text = text.strip()
if not text:
return ""
# Split into manageable chunks
max_length = 450
chunks = [text[i:i + max_length] for i in range(0, len(text), max_length)]
translated_chunks = []
for chunk in chunks:
result = self.translator(chunk)[0]['translation_text']
translated_chunks.append(result)
time.sleep(0.1) # Rate limiting
return " ".join(translated_chunks)
except Exception as e:
logger.error(f"Translation error: {str(e)}")
return text
@spaces.GPU(duration=20)
def analyze_sentiment(self, text):
"""Enhanced sentiment analysis with better negative detection"""
try:
if not text or not isinstance(text, str):
return "Neutral"
text = text.strip()
if not text:
return "Neutral"
# Get predictions with confidence scores
finbert_result = self.finbert(text)[0]
roberta_result = self.roberta(text)[0]
finbert_tone_result = self.finbert_tone(text)[0]
# Enhanced sentiment mapping with confidence thresholds
def map_sentiment(result):
label = result['label'].lower()
score = result['score']
# Higher threshold for positive to reduce false positives
if label in ['positive', 'pos', 'positive tone'] and score > 0.75:
logger.info(f"Positive: {str(score)}")
return "Positive"
# Lower threshold for negative to catch more cases
elif label in ['negative', 'neg', 'negative tone'] and score > 0.75:
logger.info(f"Negative: {str(score)}")
return "Negative"
# Consider high-confidence neutral predictions
elif label == 'neutral' and score > 0.8:
logger.info(f"Neutral: {str(score)}")
return "Neutral"
# Default to negative for uncertain cases in financial context
else:
return "Negative" if score > 0.4 else "Neutral"
# Get mapped sentiments with confidence-based logic
sentiments = [
map_sentiment(finbert_result),
map_sentiment(roberta_result),
map_sentiment(finbert_tone_result)
]
# Weighted voting - prioritize negative signals
if "Negative" in sentiments:
neg_count = sentiments.count("Negative")
if neg_count >= 2: # negative should be consensus
return "Negative"
pos_count = sentiments.count("Positive")
if pos_count >= 2: # Require stronger positive consensus
return "Positive"
return "Neutral"
except Exception as e:
logger.error(f"Sentiment analysis error: {str(e)}")
return "Neutral"
def estimate_impact(self, text, entity):
"""Estimate impact using Groq for negative sentiment texts"""
try:
if not self.groq:
return "Неопределенный эффект", "Groq API недоступен"
template = """
You are a financial analyst. Analyze this news about {entity} and assess its potential impact.
News: {news}
Classify the impact into one of these categories:
1. "Значительный риск убытков" (Significant loss risk)
2. "Умеренный риск убытков" (Moderate loss risk)
3. "Незначительный риск убытков" (Minor loss risk)
4. "Вероятность прибыли" (Potential profit)
5. "Неопределенный эффект" (Uncertain effect)
Format your response exactly as:
Impact: [category]
Reasoning: [explanation in 2-3 sentences]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
chain = prompt | self.groq
response = chain.invoke({
"entity": entity,
"news": text
})
# Parse response
response_text = response.content if hasattr(response, 'content') else str(response)
if "Impact:" in response_text and "Reasoning:" in response_text:
parts = response_text.split("Reasoning:")
impact = parts[0].split("Impact:")[1].strip()
reasoning = parts[1].strip()
else:
impact = "Неопределенный эффект"
reasoning = "Не удалось определить влияние"
return impact, reasoning
except Exception as e:
logger.error(f"Impact estimation error: {str(e)}")
return "Неопределенный эффект", f"Ошибка анализа: {str(e)}"
@spaces.GPU(duration=60)
def process_text(self, text, entity):
"""Process text with Groq-driven sentiment analysis"""
try:
translated_text = self._translate_text(text)
initial_sentiment = self.analyze_sentiment(translated_text)
impact = "Неопределенный эффект"
reasoning = ""
# Always get Groq analysis for all texts
impact, reasoning = self.estimate_impact(translated_text, entity)
reasoning = self.rutranslator(reasoning)[0]['translation_text']
# Override sentiment based on Groq impact
final_sentiment = initial_sentiment
if impact == "Вероятность прибыли":
final_sentiment = "Positive"
event_type, event_summary = self.detect_events(text, entity)
return {
'translated_text': translated_text,
'sentiment': final_sentiment,
'impact': impact,
'reasoning': reasoning,
'event_type': event_type,
'event_summary': event_summary
}
except Exception as e:
logger.error(f"Text processing error: {str(e)}")
return {
'translated_text': '',
'sentiment': 'Neutral',
'impact': 'Неопределенный эффект',
'reasoning': f'Ошибка обработки: {str(e)}',
'event_type': 'Нет',
'event_summary': ''
}
@spaces.GPU(duration=20)
def detect_events(self, text, entity):
if not text or not entity:
return "Нет", "Invalid input"
try:
# Improved prompt for MT5
prompt = f"""<s>Analyze this news about {entity}:
Text: {text}
Classify this news into ONE of these categories:
1. "Отчетность" if about: financial reports, revenue, profit, EBITDA, financial results, quarterly/annual reports
2. "Суд" if about: court cases, lawsuits, arbitration, bankruptcy, legal proceedings
3. "РЦБ" if about: bonds, securities, defaults, debt restructuring, coupon payments
4. "Нет" if none of the above
Provide classification and 2-3 sentence summary focusing on key facts.
Format response exactly as:
Category: [category name]
Summary: [brief factual summary]</s>"""
inputs = self.tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(self.device)
outputs = self.model.generate(
**inputs,
max_length=200,
num_return_sequences=1,
do_sample=False,
#temperature=0.0,
#top_p=0.9,
no_repeat_ngram_size=3
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract category and summary
if "Category:" in response and "Summary:" in response:
parts = response.split("Summary:")
category = parts[0].split("Category:")[1].strip()
summary = parts[1].strip()
# Validate category
valid_categories = {"Отчетность", "Суд", "РЦБ", "Нет"}
category = category if category in valid_categories else "Нет"
return category, summary
return "Нет", "Could not classify event"
except Exception as e:
logger.error(f"Event detection error: {str(e)}")
return "Нет", f"Error in event detection: {str(e)}"
def cleanup(self):
"""Clean up GPU resources"""
try:
self.model = None
self.translator = None
self.finbert = None
self.roberta = None
self.finbert_tone = None
torch.cuda.empty_cache()
self.initialized = False
logger.info("Cleaned up GPU resources")
except Exception as e:
logger.error(f"Error in cleanup: {str(e)}")
def create_visualizations(df):
if df is None or df.empty:
return None, None
try:
sentiments = df['Sentiment'].value_counts()
fig_sentiment = go.Figure(data=[go.Pie(
labels=sentiments.index,
values=sentiments.values,
marker_colors=['#FF6B6B', '#4ECDC4', '#95A5A6']
)])
fig_sentiment.update_layout(title="Распределение тональности")
events = df['Event_Type'].value_counts()
fig_events = go.Figure(data=[go.Bar(
x=events.index,
y=events.values,
marker_color='#2196F3'
)])
fig_events.update_layout(title="Распределение событий")
return fig_sentiment, fig_events
except Exception as e:
logger.error(f"Visualization error: {e}")
return None, None
@spaces.GPU
def process_file(file_obj):
try:
logger.info("Starting to read Excel file...")
df = pd.read_excel(file_obj, sheet_name='Публикации')
logger.info(f"Successfully read Excel file. Shape: {df.shape}")
# Deduplication
original_count = len(df)
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
logger.info(f"Removed {original_count - len(df)} duplicate entries")
detector = EventDetector()
processed_rows = []
total = len(df)
# Process in smaller batches with quota management
BATCH_SIZE = 3 # Reduced batch size
QUOTA_WAIT_TIME = 60 # Wait time when quota is exceeded
for batch_start in range(0, total, BATCH_SIZE):
try:
batch_end = min(batch_start + BATCH_SIZE, total)
batch = df.iloc[batch_start:batch_end]
# Initialize models for batch
if not detector.initialized:
detector.initialize_models()
time.sleep(1) # Wait after initialization
for idx, row in batch.iterrows():
try:
text = str(row.get('Выдержки из текста', ''))
if not text.strip():
continue
entity = str(row.get('Объект', ''))
if not entity.strip():
continue
# Process with GPU quota management
event_type = "Нет"
event_summary = ""
sentiment = "Neutral"
try:
event_type, event_summary = detector.detect_events(text, entity)
time.sleep(1) # Wait between GPU operations
sentiment = detector.analyze_sentiment(text)
except Exception as e:
if "GPU quota" in str(e):
logger.warning("GPU quota exceeded, waiting...")
time.sleep(QUOTA_WAIT_TIME)
continue
else:
raise e
processed_rows.append({
'Объект': entity,
'Заголовок': str(row.get('Заголовок', '')),
'Sentiment': sentiment,
'Event_Type': event_type,
'Event_Summary': event_summary,
'Текст': text[:1000]
})
logger.info(f"Processed {idx + 1}/{total} rows")
except Exception as e:
logger.error(f"Error processing row {idx}: {str(e)}")
continue
# Create intermediate results
if processed_rows:
intermediate_df = pd.DataFrame(processed_rows)
yield (
intermediate_df,
None,
None,
f"Обработано {len(processed_rows)}/{total} строк"
)
# Wait between batches
time.sleep(2)
# Cleanup GPU resources after each batch
torch.cuda.empty_cache()
except Exception as e:
logger.error(f"Batch processing error: {str(e)}")
if "GPU quota" in str(e):
time.sleep(QUOTA_WAIT_TIME)
continue
# Final results
if processed_rows:
result_df = pd.DataFrame(processed_rows)
fig_sentiment, fig_events = create_visualizations(result_df)
return result_df, fig_sentiment, fig_events, "Обработка завершена!"
else:
return None, None, None, "Нет обработанных данных"
except Exception as e:
logger.error(f"File processing error: {str(e)}")
raise
def create_output_file(df, uploaded_file):
"""Create Excel file with multiple sheets from processed DataFrame"""
try:
wb = load_workbook("sample_file.xlsx")
# 1. Update 'Публикации' sheet
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# 2. Update 'Мониторинг' sheet with events
ws = wb['Мониторинг']
row_idx = 4
events_df = df[df['Event_Type'] != 'Нет'].copy()
for _, row in events_df.iterrows():
ws.cell(row=row_idx, column=5, value=row['Объект'])
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
ws.cell(row=row_idx, column=7, value=row['Event_Type'])
ws.cell(row=row_idx, column=8, value=row['Event_Summary'])
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
row_idx += 1
# 3. Update 'Сводка' sheet
ws = wb['Сводка']
unique_entities = df['Объект'].unique()
entity_stats = []
for entity in unique_entities:
entity_df = df[df['Объект'] == entity]
stats = {
'Объект': entity,
'Всего': len(entity_df),
'Негативные': len(entity_df[entity_df['Sentiment'] == 'Negative']),
'Позитивные': len(entity_df[entity_df['Sentiment'] == 'Positive'])
}
# Get most severe impact for entity
negative_df = entity_df[entity_df['Sentiment'] == 'Negative']
if len(negative_df) > 0:
impacts = negative_df['Impact'].dropna()
if len(impacts) > 0:
stats['Impact'] = impacts.iloc[0]
else:
stats['Impact'] = 'Неопределенный эффект'
else:
stats['Impact'] = 'Неопределенный эффект'
entity_stats.append(stats)
# Sort by number of negative mentions
entity_stats = sorted(entity_stats, key=lambda x: x['Негативные'], reverse=True)
# Write to sheet
row_idx = 4 # Starting row in Сводка sheet
for stats in entity_stats:
ws.cell(row=row_idx, column=5, value=stats['Объект'])
ws.cell(row=row_idx, column=6, value=stats['Всего'])
ws.cell(row=row_idx, column=7, value=stats['Негативные'])
ws.cell(row=row_idx, column=8, value=stats['Позитивные'])
ws.cell(row=row_idx, column=9, value=stats['Impact'])
row_idx += 1
# 4. Update 'Значимые' sheet
ws = wb['Значимые']
row_idx = 3
sentiment_df = df[df['Sentiment'].isin(['Negative', 'Positive'])].copy()
for _, row in sentiment_df.iterrows():
ws.cell(row=row_idx, column=3, value=row['Объект'])
ws.cell(row=row_idx, column=4, value='релевантно')
ws.cell(row=row_idx, column=5, value=row['Sentiment'])
ws.cell(row=row_idx, column=6, value=row.get('Impact', '-'))
ws.cell(row=row_idx, column=7, value=row['Заголовок'])
ws.cell(row=row_idx, column=8, value=row['Выдержки из текста'])
row_idx += 1
# 5. Update 'Анализ' sheet
ws = wb['Анализ']
row_idx = 4
negative_df = df[df['Sentiment'] == 'Negative'].copy()
for _, row in negative_df.iterrows():
ws.cell(row=row_idx, column=5, value=row['Объект'])
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
ws.cell(row=row_idx, column=7, value="Риск убытка")
ws.cell(row=row_idx, column=8, value=row.get('Reasoning', '-'))
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
row_idx += 1
# 6. Update 'Тех.приложение' sheet
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
tech_cols = ['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']
tech_df = df[tech_cols].copy()
for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Save workbook
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
except Exception as e:
logger.error(f"Error creating output file: {str(e)}")
logger.error(f"DataFrame shape: {df.shape}")
logger.error(f"Available columns: {df.columns.tolist()}")
return None
@spaces.GPU(duration=90)
def process_and_download(file_bytes, control=None):
"""Synchronous wrapper for async processing"""
if file_bytes is None:
gr.Warning("Пожалуйста, загрузите файл")
return pd.DataFrame(), None, None, None, "Ожидание файла...", ""
if control is None:
control = ProcessControl()
async def async_process():
detector = None
gpu_manager = GPUTaskManager(
max_retries=3,
retry_delay=30,
cleanup_callback=lambda: detector.cleanup() if detector else None
)
try:
file_obj = io.BytesIO(file_bytes)
logger.info("File loaded into BytesIO successfully")
detector = EventDetector()
# Read and deduplicate data with retry
async def read_and_dedupe():
df = pd.read_excel(file_obj, sheet_name='Публикации')
original_count = len(df)
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
return df, original_count
df, original_count = await gpu_manager.run_with_retry(read_and_dedupe)
# Process in smaller batches with better error handling
processed_rows = []
batches = gpu_manager.batch_process(list(df.iterrows()), batch_size=3)
latest_result = (pd.DataFrame(), None, None, None, "Начало обработки...", "")
for batch in batches:
if control.should_stop():
return latest_result
try:
# Process batch with retry mechanism
async def process_batch():
batch_results = []
for idx, row in batch:
text = str(row.get('Выдержки из текста', '')).strip()
entity = str(row.get('Объект', '')).strip()
if text and entity:
results = detector.process_text(text, entity)
batch_results.append({
'Объект': entity,
'Заголовок': str(row.get('Заголовок', '')),
'Translated': results['translated_text'],
'Sentiment': results['sentiment'],
'Impact': results['impact'],
'Reasoning': results['reasoning'],
'Event_Type': results['event_type'],
'Event_Summary': results['event_summary'],
'Выдержки из текста': text
})
return batch_results
batch_results = await gpu_manager.run_with_retry(process_batch)
processed_rows.extend(batch_results)
# Update latest result
if processed_rows:
result_df = pd.DataFrame(processed_rows)
latest_result = (
result_df,
None, None, None,
f"Обработано {len(processed_rows)}/{len(df)} строк",
f"Удалено {original_count - len(df)} дубликатов"
)
except Exception as e:
if gpu_manager.is_gpu_error(e):
logger.warning(f"GPU error in batch processing: {str(e)}")
continue
else:
logger.error(f"Non-GPU error in batch processing: {str(e)}")
finally:
torch.cuda.empty_cache()
# Create final results
if processed_rows:
result_df = pd.DataFrame(processed_rows)
output_bytes_io = create_output_file(result_df, file_obj)
fig_sentiment, fig_events = create_visualizations(result_df)
if output_bytes_io:
temp_file = "results.xlsx"
with open(temp_file, "wb") as f:
f.write(output_bytes_io.getvalue())
return (
result_df,
fig_sentiment,
fig_events,
temp_file,
"Обработка завершена!",
f"Удалено {original_count - len(df)} дубликатов"
)
return (pd.DataFrame(), None, None, None, "Нет обработанных данных", "")
except Exception as e:
error_msg = f"Ошибка анализа: {str(e)}"
logger.error(error_msg)
return (pd.DataFrame(), None, None, None, error_msg, "")
finally:
if detector:
detector.cleanup()
# Run the async function in the event loop
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(async_process())
# Update the interface creation to pass the control object
def create_interface():
control = ProcessControl()
with gr.Blocks(theme=gr.themes.Soft()) as app:
# Create state for file data
current_file = gr.State(None)
gr.Markdown("# AI-анализ мониторинга новостей v.2.24a + extn")
with gr.Row():
file_input = gr.File(
label="Загрузите Excel файл",
file_types=[".xlsx"],
type="binary"
)
with gr.Row():
with gr.Column(scale=1):
analyze_btn = gr.Button(
"▶️ Начать анализ",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
stop_btn = gr.Button(
"⏹️ Остановить",
variant="stop",
size="lg"
)
with gr.Row():
status_box = gr.Textbox(
label="Статус дедупликации",
interactive=False,
value=""
)
with gr.Row():
progress = gr.Textbox(
label="Статус обработки",
interactive=False,
value="Ожидание файла..."
)
with gr.Row():
stats = gr.DataFrame(
label="Результаты анализа",
interactive=False,
wrap=True
)
with gr.Row():
with gr.Column(scale=1):
sentiment_plot = gr.Plot(label="Распределение тональности")
with gr.Column(scale=1):
events_plot = gr.Plot(label="Распределение событий")
with gr.Row():
file_output = gr.File(
label="Скачать результаты",
visible=True,
interactive=True
)
def stop_processing():
control.request_stop()
return "Остановка обработки..."
stop_btn.click(fn=stop_processing, outputs=[progress])
# Main processing with control object passed
analyze_btn.click(
fn=lambda x: process_and_download(x, control),
inputs=[file_input],
outputs=[
stats,
sentiment_plot,
events_plot,
file_output,
progress,
status_box
]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(share=True) |