Spaces:
Sleeping
Sleeping
Commit
·
412ee33
1
Parent(s):
2a0d401
v.1.14
Browse files
app.py
CHANGED
@@ -44,13 +44,108 @@ class ProcessControl:
|
|
44 |
class EventDetector:
|
45 |
def __init__(self):
|
46 |
self.model_name = "google/mt5-small"
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
self.model = None
|
49 |
self.finbert = None
|
50 |
self.roberta = None
|
51 |
self.finbert_tone = None
|
52 |
self.control = ProcessControl()
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def get_sentiment_label(self, result):
|
55 |
"""Helper method for sentiment classification"""
|
56 |
label = result['label'].lower()
|
@@ -72,9 +167,9 @@ class EventDetector:
|
|
72 |
|
73 |
try:
|
74 |
inputs = [truncated_text]
|
75 |
-
finbert_result = self.finbert(inputs
|
76 |
-
roberta_result = self.roberta(inputs
|
77 |
-
finbert_tone_result = self.finbert_tone(inputs
|
78 |
|
79 |
results = [
|
80 |
self.get_sentiment_label(finbert_result),
|
@@ -182,7 +277,7 @@ def create_interface():
|
|
182 |
control = ProcessControl()
|
183 |
|
184 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
185 |
-
gr.Markdown("# AI
|
186 |
|
187 |
with gr.Row():
|
188 |
file_input = gr.File(
|
|
|
44 |
class EventDetector:
|
45 |
def __init__(self):
|
46 |
self.model_name = "google/mt5-small"
|
47 |
+
# Initialize tokenizer with legacy=True to suppress warning
|
48 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
49 |
+
self.model_name,
|
50 |
+
legacy=True
|
51 |
+
)
|
52 |
self.model = None
|
53 |
self.finbert = None
|
54 |
self.roberta = None
|
55 |
self.finbert_tone = None
|
56 |
self.control = ProcessControl()
|
57 |
|
58 |
+
@spaces.GPU
|
59 |
+
def initialize_models(self):
|
60 |
+
"""Initialize all models with GPU support"""
|
61 |
+
try:
|
62 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
63 |
+
logger.info(f"Initializing models on device: {device}")
|
64 |
+
|
65 |
+
# Initialize MT5 model
|
66 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
|
67 |
+
|
68 |
+
# Initialize sentiment analysis pipelines
|
69 |
+
self.finbert = pipeline(
|
70 |
+
"sentiment-analysis",
|
71 |
+
model="ProsusAI/finbert",
|
72 |
+
device=device,
|
73 |
+
truncation=True,
|
74 |
+
max_length=512
|
75 |
+
)
|
76 |
+
|
77 |
+
self.roberta = pipeline(
|
78 |
+
"sentiment-analysis",
|
79 |
+
model="cardiffnlp/twitter-roberta-base-sentiment",
|
80 |
+
device=device,
|
81 |
+
truncation=True,
|
82 |
+
max_length=512
|
83 |
+
)
|
84 |
+
|
85 |
+
self.finbert_tone = pipeline(
|
86 |
+
"sentiment-analysis",
|
87 |
+
model="yiyanghkust/finbert-tone",
|
88 |
+
device=device,
|
89 |
+
truncation=True,
|
90 |
+
max_length=512
|
91 |
+
)
|
92 |
+
|
93 |
+
logger.info("All models initialized successfully")
|
94 |
+
return True
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
logger.error(f"Model initialization error: {str(e)}")
|
98 |
+
return False
|
99 |
+
|
100 |
+
@spaces.GPU
|
101 |
+
def detect_events(self, text, entity):
|
102 |
+
if not text or not entity:
|
103 |
+
return "Нет", "Invalid input"
|
104 |
+
|
105 |
+
try:
|
106 |
+
# Check if models are initialized
|
107 |
+
if self.model is None:
|
108 |
+
if not self.initialize_models():
|
109 |
+
return "Нет", "Model initialization failed"
|
110 |
+
|
111 |
+
# Truncate input text
|
112 |
+
text = text[:500]
|
113 |
+
|
114 |
+
prompt = f"""<s>Analyze the following news about {entity}:
|
115 |
+
Text: {text}
|
116 |
+
Task: Identify the main event type and provide a brief summary.</s>"""
|
117 |
+
|
118 |
+
inputs = self.tokenizer(
|
119 |
+
prompt,
|
120 |
+
return_tensors="pt",
|
121 |
+
padding=True,
|
122 |
+
truncation=True,
|
123 |
+
max_length=512
|
124 |
+
).to(self.model.device)
|
125 |
+
|
126 |
+
outputs = self.model.generate(
|
127 |
+
**inputs,
|
128 |
+
max_length=300,
|
129 |
+
num_return_sequences=1,
|
130 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
131 |
+
eos_token_id=self.tokenizer.eos_token_id
|
132 |
+
)
|
133 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
134 |
+
|
135 |
+
event_type = "Нет"
|
136 |
+
if any(term in text.lower() for term in ['отчет', 'выручка', 'прибыль', 'ebitda']):
|
137 |
+
event_type = "Отчетность"
|
138 |
+
elif any(term in text.lower() for term in ['облигаци', 'купон', 'дефолт']):
|
139 |
+
event_type = "РЦБ"
|
140 |
+
elif any(term in text.lower() for term in ['суд', 'иск', 'арбитраж']):
|
141 |
+
event_type = "Суд"
|
142 |
+
|
143 |
+
return event_type, response
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
logger.error(f"Event detection error: {str(e)}")
|
147 |
+
return "Нет", f"Error: {str(e)}"
|
148 |
+
|
149 |
def get_sentiment_label(self, result):
|
150 |
"""Helper method for sentiment classification"""
|
151 |
label = result['label'].lower()
|
|
|
167 |
|
168 |
try:
|
169 |
inputs = [truncated_text]
|
170 |
+
finbert_result = self.finbert(inputs)[0]
|
171 |
+
roberta_result = self.roberta(inputs)[0]
|
172 |
+
finbert_tone_result = self.finbert_tone(inputs)[0]
|
173 |
|
174 |
results = [
|
175 |
self.get_sentiment_label(finbert_result),
|
|
|
277 |
control = ProcessControl()
|
278 |
|
279 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
280 |
+
gr.Markdown("# AI-а��ализ мониторинга новостей v.1.14")
|
281 |
|
282 |
with gr.Row():
|
283 |
file_input = gr.File(
|