pablovela5620's picture
more updates
6c083d0
try:
import spaces # type: ignore
IN_SPACES = True
except ImportError:
print("Not running on Zero")
IN_SPACES = False
import tempfile
import uuid
from dataclasses import dataclass, fields
from pathlib import Path
from typing import Literal, TypedDict
import cv2
import gradio as gr
import numpy as np
import rerun as rr
import rerun.blueprint as rrb
import torch
from einops import rearrange
from gradio_rerun import Rerun
from gradio_rerun.events import (
SelectionChange,
)
from jaxtyping import Bool, Float, Float32, UInt8
from monopriors.depth_utils import clip_disparity, depth_edges_mask, depth_to_points
from monopriors.relative_depth_models.depth_anything_v2 import (
DepthAnythingV2Predictor,
RelativeDepthPrediction,
)
from sam2.sam2_video_predictor import SAM2VideoPredictor
from simplecv.video_io import VideoReader
from annotation_example.op import create_blueprint
# if gr.NO_RELOAD:
DEPTH_PREDICTOR = DepthAnythingV2Predictor(device="cpu", encoder="vits")
DEPTH_PREDICTOR.set_model_device("cuda")
class RerunLogPaths(TypedDict):
timeline_name: str
parent_log_path: Path
camera_log_path: Path
pinhole_path: Path
def log_relative_pred_rec(
rec: rr.RecordingStream,
parent_log_path: Path,
relative_pred: RelativeDepthPrediction,
rgb_hw3: UInt8[np.ndarray, "h w 3"],
seg_mask_hw: UInt8[np.ndarray, "h w"] | None = None,
remove_flying_pixels: bool = True,
jpeg_quality: int = 90,
depth_edge_threshold: float = 1.1,
) -> None:
cam_log_path: Path = parent_log_path / "camera"
pinhole_path: Path = cam_log_path / "pinhole"
# assume camera is at the origin
cam_T_world_44: Float[np.ndarray, "4 4"] = np.eye(4)
rec.log(
f"{cam_log_path}",
rr.Transform3D(
translation=cam_T_world_44[:3, 3],
mat3x3=cam_T_world_44[:3, :3],
from_parent=True,
),
)
rec.log(
f"{pinhole_path}",
rr.Pinhole(
image_from_camera=relative_pred.K_33,
width=rgb_hw3.shape[1],
height=rgb_hw3.shape[0],
image_plane_distance=1.5,
camera_xyz=rr.ViewCoordinates.RDF,
),
)
rec.log(f"{pinhole_path}/image", rr.Image(rgb_hw3).compress(jpeg_quality=jpeg_quality))
depth_hw: Float32[np.ndarray, "h w"] = relative_pred.depth
disparity = relative_pred.disparity
# removes outliers from disparity (sometimes we can get weirdly large values)
clipped_disparity: UInt8[np.ndarray, "h w"] = clip_disparity(disparity)
if remove_flying_pixels:
edges_mask: Bool[np.ndarray, "h w"] = depth_edges_mask(depth_hw, threshold=depth_edge_threshold)
rec.log(
f"{pinhole_path}/edge_mask",
rr.SegmentationImage(edges_mask.astype(np.uint8)),
)
depth_hw: Float32[np.ndarray, "h w"] = depth_hw * ~edges_mask
clipped_disparity: Float32[np.ndarray, "h w"] = clipped_disparity * ~edges_mask
if seg_mask_hw is not None:
rec.log(
f"{pinhole_path}/segmentation",
rr.SegmentationImage(seg_mask_hw),
)
depth_hw: Float32[np.ndarray, "h w"] = depth_hw # * seg_mask_hw
clipped_disparity: Float32[np.ndarray, "h w"] = clipped_disparity # * seg_mask_hw
rec.log(f"{pinhole_path}/depth", rr.DepthImage(depth_hw))
# log to cam_log_path to avoid backprojecting disparity
rec.log(f"{cam_log_path}/disparity", rr.DepthImage(clipped_disparity))
depth_1hw: Float32[np.ndarray, "1 h w"] = rearrange(depth_hw, "h w -> 1 h w")
pts_3d: Float32[np.ndarray, "h w 3"] = depth_to_points(depth_1hw, relative_pred.K_33)
colors = rgb_hw3.reshape(-1, 3)
# If we have a segmentation mask, make those pixels blue
if seg_mask_hw is not None:
# Reshape the mask to match colors shape
flat_mask = seg_mask_hw.reshape(-1)
# Set pixels where mask == 1 to blue (BGR format)
# Blue: [255, 0, 0] in BGR or [0, 0, 255] in RGB
colors[flat_mask == 1, :] = [0, 0, 255] # RGB format: Blue
rec.log(
f"{parent_log_path}/point_cloud",
rr.Points3D(
positions=pts_3d.reshape(-1, 3),
colors=colors,
),
)
@dataclass
class KeypointsContainer:
"""Container for include and exclude keypoints"""
include_points: np.ndarray # shape (n,2)
exclude_points: np.ndarray # shape (m,2)
@classmethod
def empty(cls) -> "KeypointsContainer":
"""Create an empty keypoints container"""
return cls(include_points=np.zeros((0, 2), dtype=float), exclude_points=np.zeros((0, 2), dtype=float))
def add_point(self, point: tuple[float, float], label: Literal["include", "exclude"]) -> None:
"""Add a point with the specified label"""
point_array = np.array([point], dtype=float)
if label == "include":
self.include_points = (
np.vstack([self.include_points, point_array]) if self.include_points.shape[0] > 0 else point_array
)
else:
self.exclude_points = (
np.vstack([self.exclude_points, point_array]) if self.exclude_points.shape[0] > 0 else point_array
)
def clear(self) -> None:
"""Clear all points"""
self.include_points = np.zeros((0, 2), dtype=float)
self.exclude_points = np.zeros((0, 2), dtype=float)
# In this function, the `request` and `evt` parameters will be automatically injected by Gradio when this event listener is fired.
#
# `SelectionChange` is a subclass of `EventData`: https://www.gradio.app/docs/gradio/eventdata
# `gr.Request`: https://www.gradio.app/main/docs/gradio/request
def single_view_update_keypoints(
active_recording_id: uuid.UUID,
point_type: Literal["include", "exclude"],
keypoints_container: KeypointsContainer,
log_paths: RerunLogPaths,
request: gr.Request,
change: SelectionChange,
):
evt = change.payload
# We can only log a keypoint if the user selected only a single item.
if len(evt.items) != 1:
return
item = evt.items[0]
# If the selected item isn't an entity, or we don't have its position, then bail out.
if item.type != "entity" or item.position is None:
return
# Now we can produce a valid keypoint.
rec: rr.RecordingStream = get_recording(active_recording_id)
stream: rr.BinaryStream = rec.binary_stream()
current_keypoint: tuple[int, int] = item.position[0:2]
keypoints_container.add_point(current_keypoint, point_type)
rec.set_time_sequence(log_paths["timeline_name"], sequence=0)
# Log include points if any exist
if keypoints_container.include_points.shape[0] > 0:
rec.log(
f"{item.entity_path}/include", rr.Points2D(keypoints_container.include_points, colors=(0, 255, 0), radii=5)
)
# Log exclude points if any exist
if keypoints_container.exclude_points.shape[0] > 0:
rec.log(
f"{item.entity_path}/exclude",
rr.Points2D(keypoints_container.exclude_points, colors=(255, 0, 0), radii=5),
)
# Ensure we consume everything from the recording.
stream.flush()
yield stream.read(), keypoints_container
def get_recording(recording_id) -> rr.RecordingStream:
return rr.RecordingStream(application_id="Single View Annotation", recording_id=recording_id)
def rescale_img(img_hw3: UInt8[np.ndarray, "h w 3"], max_dim: int) -> UInt8[np.ndarray, "... 3"]:
# resize the image to have a max dim of max_dim
height, width, _ = img_hw3.shape
current_dim = max(height, width)
# If current dimension is larger than max_dim, calculate scale factor
if current_dim > max_dim:
scale_factor = max_dim / current_dim
new_height = int(height * scale_factor)
new_width = int(width * scale_factor)
# Resize image maintaining aspect ratio
resized_img: UInt8[np.ndarray, "... 3"] = cv2.resize(
img_hw3, (new_width, new_height), interpolation=cv2.INTER_AREA
)
return resized_img
# Return original image if no resize needed
return img_hw3
# Allow using keyword args in gradio to avoid mixing up the order of inputs
# a bit of an antipattern that is requied to make things work with beartype + keyword args
@dataclass
class PreprocessVideoComponents:
video_file: gr.Video
def to_list(self) -> list:
return [getattr(self, f.name) for f in fields(self)]
@dataclass
class PreprocessVideoValues:
video_file: str
def preprocess_video(
*input_params,
):
yield from _preprocess_video(*input_params)
@spaces.GPU
def _preprocess_video(
*input_params,
progress=gr.Progress(track_tqdm=True), # noqa B008
):
input_values: PreprocessVideoValues = PreprocessVideoValues(*input_params)
# create a new recording id, and store it in a Gradio's session state.
recording_id: uuid.UUID = uuid.uuid4()
rec: rr.RecordingStream = get_recording(recording_id)
stream: rr.BinaryStream = rec.binary_stream()
log_paths = RerunLogPaths(
timeline_name="frame_idx",
parent_log_path=Path("world"),
camera_log_path=Path("world") / "camera",
pinhole_path=Path("world") / "camera" / "pinhole",
)
video_path: Path = Path(input_values.video_file)
initial_blueprint = rrb.Blueprint(
rrb.Horizontal(
rrb.Spatial2DView(origin=f"{log_paths['pinhole_path']}"),
),
collapse_panels=True,
)
rec.send_blueprint(initial_blueprint)
video_reader: VideoReader = VideoReader(video_path)
tmp_frames_dir: str = tempfile.mkdtemp()
target_fps: int = 10
frame_interval: int = int(video_reader.fps // target_fps)
max_frames: int = 100
total_saved_frames: int = 0
max_size: int = 640
progress(0, desc="Reading video frames")
for idx, bgr in enumerate(video_reader):
if idx % frame_interval == 0:
if total_saved_frames >= max_frames:
break
bgr: np.ndarray = rescale_img(bgr, max_size)
# 3. Save frames to temporary directory
cv2.imwrite(f"{tmp_frames_dir}/{idx:05d}.jpg", bgr)
total_saved_frames += 1
first_frame_path: Path = Path(tmp_frames_dir) / "00000.jpg"
first_bgr: np.ndarray = cv2.imread(str(first_frame_path))
progress(0.5, desc="Initializing SAM")
VIDEO_SAM_PREDICTOR: SAM2VideoPredictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-tiny")
with torch.inference_mode():
inference_state = VIDEO_SAM_PREDICTOR.init_state(video_path=tmp_frames_dir)
VIDEO_SAM_PREDICTOR.reset_state(inference_state)
print(type(inference_state))
rec.set_time_sequence(log_paths["timeline_name"], sequence=0)
rec.log(
f"{log_paths['pinhole_path']}/image",
rr.Image(first_bgr, color_model=rr.ColorModel.BGR).compress(jpeg_quality=90),
)
# Ensure we consume everything from the recording.
stream.flush()
yield gr.Accordion(open=False), stream.read(), inference_state, Path(tmp_frames_dir), recording_id, log_paths
def reset_keypoints(active_recording_id: uuid.UUID, keypoints_container: KeypointsContainer, log_paths: RerunLogPaths):
# Now we can produce a valid keypoint.
rec: rr.RecordingStream = get_recording(active_recording_id)
stream: rr.BinaryStream = rec.binary_stream()
keypoints_container.clear()
rec.set_time_sequence(log_paths["timeline_name"], sequence=0)
rec.log(
f"{log_paths['pinhole_path']}/image/include",
rr.Clear(recursive=True),
)
rec.log(
f"{log_paths['pinhole_path']}/image/exclude",
rr.Clear(recursive=True),
)
rec.log(
f"{log_paths['pinhole_path']}/segmentation",
rr.Clear(recursive=True),
)
rec.log(
f"{log_paths['pinhole_path']}/depth",
rr.Clear(recursive=True),
)
# Ensure we consume everything from the recording.
stream.flush()
yield stream.read(), keypoints_container
def get_initial_mask(
recording_id: uuid.UUID,
inference_state: dict,
keypoint_container: KeypointsContainer,
log_paths: RerunLogPaths,
):
rec = get_recording(recording_id)
stream = rec.binary_stream()
rec.set_time_sequence(log_paths["timeline_name"], 0)
points = np.vstack([keypoint_container.include_points, keypoint_container.exclude_points]).astype(np.float32)
if len(points) == 0:
raise gr.Error("No points selected. Please add include or exclude points.")
# Create labels array: 1 for include points, 0 for exclude points
labels = np.ones(len(keypoint_container.include_points), dtype=np.int32)
if len(keypoint_container.exclude_points) > 0:
labels = np.concatenate([labels, np.zeros(len(keypoint_container.exclude_points), dtype=np.int32)])
print(f"Points shape: {points.shape}")
print(f"Labels shape: {labels.shape}")
print(labels)
print(
f"Include points: {keypoint_container.include_points.shape}, Exclude points: {keypoint_container.exclude_points.shape}"
)
VIDEO_SAM_PREDICTOR: SAM2VideoPredictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-tiny")
with torch.inference_mode():
frame_idx: int
object_ids: list
masks: Float32[torch.Tensor, "b 3 h w"]
frame_idx, object_ids, masks = VIDEO_SAM_PREDICTOR.add_new_points_or_box(
inference_state=inference_state,
frame_idx=0,
obj_id=0,
points=points,
labels=labels,
)
masks: Bool[np.ndarray, "1 h w"] = (masks[0] > 0.0).numpy(force=True)
rec.log(
f"{log_paths['pinhole_path']}/segmentation",
rr.SegmentationImage(masks[0].astype(np.uint8)),
)
yield stream.read()
def propagate_mask(
recording_id: uuid.UUID,
inference_state: dict,
keypoint_container: KeypointsContainer,
frames_dir: Path,
log_paths: RerunLogPaths,
):
rec = get_recording(recording_id)
stream = rec.binary_stream()
blueprint = create_blueprint(parent_log_path=log_paths["parent_log_path"])
rec.send_blueprint(blueprint)
rec.log(f"{log_paths['parent_log_path']}", rr.ViewCoordinates.RDF)
points = np.vstack([keypoint_container.include_points, keypoint_container.exclude_points]).astype(np.float32)
if len(points) == 0:
raise gr.Error("No points selected. Please add include or exclude points.")
# Create labels array: 1 for include points, 0 for exclude points
labels = np.ones(len(keypoint_container.include_points), dtype=np.int32)
if len(keypoint_container.exclude_points) > 0:
labels = np.concatenate([labels, np.zeros(len(keypoint_container.exclude_points), dtype=np.int32)])
frames_paths: list[Path] = sorted(frames_dir.glob("*.jpg"))
# remove the keypoints as they're in the way during propagation
rec.log(
f"{log_paths['pinhole_path']}/include",
rr.Clear(recursive=True),
)
rec.log(
f"{log_paths['pinhole_path']}/exclude",
rr.Clear(recursive=True),
)
VIDEO_SAM_PREDICTOR: SAM2VideoPredictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-tiny")
with torch.inference_mode():
frame_idx: int
object_ids: list
masks: Float32[torch.Tensor, "b 3 h w"]
frame_idx, object_ids, masks = VIDEO_SAM_PREDICTOR.add_new_points_or_box(
inference_state, frame_idx=0, obj_id=0, points=points, labels=labels
)
# propagate the prompts to get masklets throughout the video
for frames_path, (frame_idx, object_ids, masks) in zip(
frames_paths, VIDEO_SAM_PREDICTOR.propagate_in_video(inference_state), strict=True
):
rec.set_time_sequence(log_paths["timeline_name"], frame_idx)
masks: Bool[np.ndarray, "1 h w"] = (masks[0] > 0.0).numpy(force=True)
bgr = cv2.imread(str(frames_path))
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
depth_pred: RelativeDepthPrediction = DEPTH_PREDICTOR.__call__(rgb=rgb, K_33=None)
log_relative_pred_rec(
rec=rec,
parent_log_path=log_paths["parent_log_path"],
relative_pred=depth_pred,
rgb_hw3=rgb,
seg_mask_hw=masks[0].astype(np.uint8),
remove_flying_pixels=True,
jpeg_quality=90,
depth_edge_threshold=0.1,
)
yield stream.read()
with gr.Blocks() as single_view_block:
keypoints = gr.State(KeypointsContainer.empty())
inference_state = gr.State({})
frames_dir = gr.State(Path())
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("Your video IN", open=True) as video_in_drawer:
video_in = gr.Video(label="Video IN", format=None)
point_type = gr.Radio(
label="point type",
choices=["include", "exclude"],
value="include",
scale=1,
)
clear_points_btn = gr.Button("Clear Points", scale=1)
get_initial_mask_btn = gr.Button("Get Initial Mask", scale=1)
propagate_mask_btn = gr.Button("Propagate Mask", scale=1)
stop_propagation_btn = gr.Button("Stop Propagation", scale=1)
with gr.Column(scale=4):
viewer = Rerun(
streaming=True,
panel_states={
"time": "collapsed",
"blueprint": "hidden",
"selection": "hidden",
},
height=700,
)
# We make a new recording id, and store it in a Gradio's session state.
recording_id = gr.State()
log_paths = gr.State({})
input_components = PreprocessVideoComponents(
video_file=video_in,
)
# triggered on video upload
video_in.upload(
fn=preprocess_video,
inputs=input_components.to_list(),
outputs=[video_in_drawer, viewer, inference_state, frames_dir, recording_id, log_paths],
)
viewer.selection_change(
single_view_update_keypoints,
inputs=[
recording_id,
point_type,
keypoints,
log_paths,
],
outputs=[viewer, keypoints],
)
clear_points_btn.click(
fn=reset_keypoints,
inputs=[recording_id, keypoints, log_paths],
outputs=[viewer, keypoints],
)
get_initial_mask_btn.click(
fn=get_initial_mask,
inputs=[recording_id, inference_state, keypoints, log_paths],
outputs=[viewer],
)
propagate_event = propagate_mask_btn.click(
fn=propagate_mask,
inputs=[recording_id, inference_state, keypoints, frames_dir, log_paths],
outputs=[viewer],
)
stop_propagation_btn.click(
fn=lambda: None,
inputs=[],
outputs=[],
cancels=[propagate_event],
)