File size: 19,048 Bytes
be9b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd2fa5
 
 
be9b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd2fa5
be9b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c083d0
be9b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c083d0
be9b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c083d0
 
be9b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
try:
    import spaces  # type: ignore

    IN_SPACES = True
except ImportError:
    print("Not running on Zero")
    IN_SPACES = False


import tempfile
import uuid
from dataclasses import dataclass, fields
from pathlib import Path
from typing import Literal, TypedDict

import cv2
import gradio as gr
import numpy as np
import rerun as rr
import rerun.blueprint as rrb
import torch
from einops import rearrange
from gradio_rerun import Rerun
from gradio_rerun.events import (
    SelectionChange,
)
from jaxtyping import Bool, Float, Float32, UInt8
from monopriors.depth_utils import clip_disparity, depth_edges_mask, depth_to_points
from monopriors.relative_depth_models.depth_anything_v2 import (
    DepthAnythingV2Predictor,
    RelativeDepthPrediction,
)
from sam2.sam2_video_predictor import SAM2VideoPredictor
from simplecv.video_io import VideoReader

from annotation_example.op import create_blueprint

# if gr.NO_RELOAD:
DEPTH_PREDICTOR = DepthAnythingV2Predictor(device="cpu", encoder="vits")
DEPTH_PREDICTOR.set_model_device("cuda")


class RerunLogPaths(TypedDict):
    timeline_name: str
    parent_log_path: Path
    camera_log_path: Path
    pinhole_path: Path


def log_relative_pred_rec(
    rec: rr.RecordingStream,
    parent_log_path: Path,
    relative_pred: RelativeDepthPrediction,
    rgb_hw3: UInt8[np.ndarray, "h w 3"],
    seg_mask_hw: UInt8[np.ndarray, "h w"] | None = None,
    remove_flying_pixels: bool = True,
    jpeg_quality: int = 90,
    depth_edge_threshold: float = 1.1,
) -> None:
    cam_log_path: Path = parent_log_path / "camera"
    pinhole_path: Path = cam_log_path / "pinhole"

    # assume camera is at the origin
    cam_T_world_44: Float[np.ndarray, "4 4"] = np.eye(4)

    rec.log(
        f"{cam_log_path}",
        rr.Transform3D(
            translation=cam_T_world_44[:3, 3],
            mat3x3=cam_T_world_44[:3, :3],
            from_parent=True,
        ),
    )
    rec.log(
        f"{pinhole_path}",
        rr.Pinhole(
            image_from_camera=relative_pred.K_33,
            width=rgb_hw3.shape[1],
            height=rgb_hw3.shape[0],
            image_plane_distance=1.5,
            camera_xyz=rr.ViewCoordinates.RDF,
        ),
    )
    rec.log(f"{pinhole_path}/image", rr.Image(rgb_hw3).compress(jpeg_quality=jpeg_quality))

    depth_hw: Float32[np.ndarray, "h w"] = relative_pred.depth
    disparity = relative_pred.disparity
    # removes outliers from disparity (sometimes we can get weirdly large values)
    clipped_disparity: UInt8[np.ndarray, "h w"] = clip_disparity(disparity)
    if remove_flying_pixels:
        edges_mask: Bool[np.ndarray, "h w"] = depth_edges_mask(depth_hw, threshold=depth_edge_threshold)
        rec.log(
            f"{pinhole_path}/edge_mask",
            rr.SegmentationImage(edges_mask.astype(np.uint8)),
        )
        depth_hw: Float32[np.ndarray, "h w"] = depth_hw * ~edges_mask
        clipped_disparity: Float32[np.ndarray, "h w"] = clipped_disparity * ~edges_mask

    if seg_mask_hw is not None:
        rec.log(
            f"{pinhole_path}/segmentation",
            rr.SegmentationImage(seg_mask_hw),
        )
        depth_hw: Float32[np.ndarray, "h w"] = depth_hw  # * seg_mask_hw
        clipped_disparity: Float32[np.ndarray, "h w"] = clipped_disparity  # * seg_mask_hw

    rec.log(f"{pinhole_path}/depth", rr.DepthImage(depth_hw))

    # log to cam_log_path to avoid backprojecting disparity
    rec.log(f"{cam_log_path}/disparity", rr.DepthImage(clipped_disparity))

    depth_1hw: Float32[np.ndarray, "1 h w"] = rearrange(depth_hw, "h w -> 1 h w")
    pts_3d: Float32[np.ndarray, "h w 3"] = depth_to_points(depth_1hw, relative_pred.K_33)

    colors = rgb_hw3.reshape(-1, 3)

    # If we have a segmentation mask, make those pixels blue
    if seg_mask_hw is not None:
        # Reshape the mask to match colors shape
        flat_mask = seg_mask_hw.reshape(-1)

        # Set pixels where mask == 1 to blue (BGR format)
        # Blue: [255, 0, 0] in BGR or [0, 0, 255] in RGB
        colors[flat_mask == 1, :] = [0, 0, 255]  # RGB format: Blue

    rec.log(
        f"{parent_log_path}/point_cloud",
        rr.Points3D(
            positions=pts_3d.reshape(-1, 3),
            colors=colors,
        ),
    )


@dataclass
class KeypointsContainer:
    """Container for include and exclude keypoints"""

    include_points: np.ndarray  # shape (n,2)
    exclude_points: np.ndarray  # shape (m,2)

    @classmethod
    def empty(cls) -> "KeypointsContainer":
        """Create an empty keypoints container"""
        return cls(include_points=np.zeros((0, 2), dtype=float), exclude_points=np.zeros((0, 2), dtype=float))

    def add_point(self, point: tuple[float, float], label: Literal["include", "exclude"]) -> None:
        """Add a point with the specified label"""
        point_array = np.array([point], dtype=float)
        if label == "include":
            self.include_points = (
                np.vstack([self.include_points, point_array]) if self.include_points.shape[0] > 0 else point_array
            )
        else:
            self.exclude_points = (
                np.vstack([self.exclude_points, point_array]) if self.exclude_points.shape[0] > 0 else point_array
            )

    def clear(self) -> None:
        """Clear all points"""
        self.include_points = np.zeros((0, 2), dtype=float)
        self.exclude_points = np.zeros((0, 2), dtype=float)


# In this function, the `request` and `evt` parameters will be automatically injected by Gradio when this event listener is fired.
#
# `SelectionChange` is a subclass of `EventData`: https://www.gradio.app/docs/gradio/eventdata
# `gr.Request`: https://www.gradio.app/main/docs/gradio/request
def single_view_update_keypoints(
    active_recording_id: uuid.UUID,
    point_type: Literal["include", "exclude"],
    keypoints_container: KeypointsContainer,
    log_paths: RerunLogPaths,
    request: gr.Request,
    change: SelectionChange,
):
    evt = change.payload

    # We can only log a keypoint if the user selected only a single item.
    if len(evt.items) != 1:
        return
    item = evt.items[0]

    # If the selected item isn't an entity, or we don't have its position, then bail out.
    if item.type != "entity" or item.position is None:
        return

    # Now we can produce a valid keypoint.
    rec: rr.RecordingStream = get_recording(active_recording_id)
    stream: rr.BinaryStream = rec.binary_stream()
    current_keypoint: tuple[int, int] = item.position[0:2]
    keypoints_container.add_point(current_keypoint, point_type)

    rec.set_time_sequence(log_paths["timeline_name"], sequence=0)
    # Log include points if any exist
    if keypoints_container.include_points.shape[0] > 0:
        rec.log(
            f"{item.entity_path}/include", rr.Points2D(keypoints_container.include_points, colors=(0, 255, 0), radii=5)
        )

    # Log exclude points if any exist
    if keypoints_container.exclude_points.shape[0] > 0:
        rec.log(
            f"{item.entity_path}/exclude",
            rr.Points2D(keypoints_container.exclude_points, colors=(255, 0, 0), radii=5),
        )

    # Ensure we consume everything from the recording.
    stream.flush()
    yield stream.read(), keypoints_container


def get_recording(recording_id) -> rr.RecordingStream:
    return rr.RecordingStream(application_id="Single View Annotation", recording_id=recording_id)


def rescale_img(img_hw3: UInt8[np.ndarray, "h w 3"], max_dim: int) -> UInt8[np.ndarray, "... 3"]:
    # resize the image to have a max dim of max_dim
    height, width, _ = img_hw3.shape
    current_dim = max(height, width)

    # If current dimension is larger than max_dim, calculate scale factor
    if current_dim > max_dim:
        scale_factor = max_dim / current_dim
        new_height = int(height * scale_factor)
        new_width = int(width * scale_factor)

        # Resize image maintaining aspect ratio
        resized_img: UInt8[np.ndarray, "... 3"] = cv2.resize(
            img_hw3, (new_width, new_height), interpolation=cv2.INTER_AREA
        )
        return resized_img

    # Return original image if no resize needed
    return img_hw3


# Allow using keyword args in gradio to avoid mixing up the order of inputs
# a bit of an antipattern that is requied to make things work with beartype + keyword args
@dataclass
class PreprocessVideoComponents:
    video_file: gr.Video

    def to_list(self) -> list:
        return [getattr(self, f.name) for f in fields(self)]


@dataclass
class PreprocessVideoValues:
    video_file: str


def preprocess_video(
    *input_params,
):
    yield from _preprocess_video(*input_params)

@spaces.GPU
def _preprocess_video(
    *input_params,
    progress=gr.Progress(track_tqdm=True),  # noqa B008
):
    input_values: PreprocessVideoValues = PreprocessVideoValues(*input_params)
    # create a new recording id, and store it in a Gradio's session state.
    recording_id: uuid.UUID = uuid.uuid4()
    rec: rr.RecordingStream = get_recording(recording_id)
    stream: rr.BinaryStream = rec.binary_stream()

    log_paths = RerunLogPaths(
        timeline_name="frame_idx",
        parent_log_path=Path("world"),
        camera_log_path=Path("world") / "camera",
        pinhole_path=Path("world") / "camera" / "pinhole",
    )

    video_path: Path = Path(input_values.video_file)

    initial_blueprint = rrb.Blueprint(
        rrb.Horizontal(
            rrb.Spatial2DView(origin=f"{log_paths['pinhole_path']}"),
        ),
        collapse_panels=True,
    )

    rec.send_blueprint(initial_blueprint)

    video_reader: VideoReader = VideoReader(video_path)
    tmp_frames_dir: str = tempfile.mkdtemp()

    target_fps: int = 10
    frame_interval: int = int(video_reader.fps // target_fps)
    max_frames: int = 100
    total_saved_frames: int = 0
    max_size: int = 640

    progress(0, desc="Reading video frames")
    for idx, bgr in enumerate(video_reader):
        if idx % frame_interval == 0:
            if total_saved_frames >= max_frames:
                break
            bgr: np.ndarray = rescale_img(bgr, max_size)
            # 3. Save frames to temporary directory
            cv2.imwrite(f"{tmp_frames_dir}/{idx:05d}.jpg", bgr)
            total_saved_frames += 1

    first_frame_path: Path = Path(tmp_frames_dir) / "00000.jpg"
    first_bgr: np.ndarray = cv2.imread(str(first_frame_path))

    progress(0.5, desc="Initializing SAM")
    VIDEO_SAM_PREDICTOR: SAM2VideoPredictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-tiny")
    with torch.inference_mode():
        inference_state = VIDEO_SAM_PREDICTOR.init_state(video_path=tmp_frames_dir)
        VIDEO_SAM_PREDICTOR.reset_state(inference_state)
    print(type(inference_state))

    rec.set_time_sequence(log_paths["timeline_name"], sequence=0)
    rec.log(
        f"{log_paths['pinhole_path']}/image",
        rr.Image(first_bgr, color_model=rr.ColorModel.BGR).compress(jpeg_quality=90),
    )

    # Ensure we consume everything from the recording.
    stream.flush()

    yield gr.Accordion(open=False), stream.read(), inference_state, Path(tmp_frames_dir), recording_id, log_paths


def reset_keypoints(active_recording_id: uuid.UUID, keypoints_container: KeypointsContainer, log_paths: RerunLogPaths):
    # Now we can produce a valid keypoint.
    rec: rr.RecordingStream = get_recording(active_recording_id)
    stream: rr.BinaryStream = rec.binary_stream()

    keypoints_container.clear()

    rec.set_time_sequence(log_paths["timeline_name"], sequence=0)
    rec.log(
        f"{log_paths['pinhole_path']}/image/include",
        rr.Clear(recursive=True),
    )
    rec.log(
        f"{log_paths['pinhole_path']}/image/exclude",
        rr.Clear(recursive=True),
    )
    rec.log(
        f"{log_paths['pinhole_path']}/segmentation",
        rr.Clear(recursive=True),
    )
    rec.log(
        f"{log_paths['pinhole_path']}/depth",
        rr.Clear(recursive=True),
    )

    # Ensure we consume everything from the recording.
    stream.flush()
    yield stream.read(), keypoints_container


def get_initial_mask(
    recording_id: uuid.UUID,
    inference_state: dict,
    keypoint_container: KeypointsContainer,
    log_paths: RerunLogPaths,
):
    rec = get_recording(recording_id)
    stream = rec.binary_stream()

    rec.set_time_sequence(log_paths["timeline_name"], 0)

    points = np.vstack([keypoint_container.include_points, keypoint_container.exclude_points]).astype(np.float32)
    if len(points) == 0:
        raise gr.Error("No points selected. Please add include or exclude points.")

    # Create labels array: 1 for include points, 0 for exclude points
    labels = np.ones(len(keypoint_container.include_points), dtype=np.int32)
    if len(keypoint_container.exclude_points) > 0:
        labels = np.concatenate([labels, np.zeros(len(keypoint_container.exclude_points), dtype=np.int32)])

    print(f"Points shape: {points.shape}")
    print(f"Labels shape: {labels.shape}")
    print(labels)
    print(
        f"Include points: {keypoint_container.include_points.shape}, Exclude points: {keypoint_container.exclude_points.shape}"
    )

    VIDEO_SAM_PREDICTOR: SAM2VideoPredictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-tiny")
    with torch.inference_mode():
        frame_idx: int
        object_ids: list
        masks: Float32[torch.Tensor, "b 3 h w"]

        frame_idx, object_ids, masks = VIDEO_SAM_PREDICTOR.add_new_points_or_box(
            inference_state=inference_state,
            frame_idx=0,
            obj_id=0,
            points=points,
            labels=labels,
        )

        masks: Bool[np.ndarray, "1 h w"] = (masks[0] > 0.0).numpy(force=True)

    rec.log(
        f"{log_paths['pinhole_path']}/segmentation",
        rr.SegmentationImage(masks[0].astype(np.uint8)),
    )
    yield stream.read()


def propagate_mask(
    recording_id: uuid.UUID,
    inference_state: dict,
    keypoint_container: KeypointsContainer,
    frames_dir: Path,
    log_paths: RerunLogPaths,
):
    rec = get_recording(recording_id)
    stream = rec.binary_stream()

    blueprint = create_blueprint(parent_log_path=log_paths["parent_log_path"])
    rec.send_blueprint(blueprint)

    rec.log(f"{log_paths['parent_log_path']}", rr.ViewCoordinates.RDF)

    points = np.vstack([keypoint_container.include_points, keypoint_container.exclude_points]).astype(np.float32)
    if len(points) == 0:
        raise gr.Error("No points selected. Please add include or exclude points.")

    # Create labels array: 1 for include points, 0 for exclude points
    labels = np.ones(len(keypoint_container.include_points), dtype=np.int32)
    if len(keypoint_container.exclude_points) > 0:
        labels = np.concatenate([labels, np.zeros(len(keypoint_container.exclude_points), dtype=np.int32)])

    frames_paths: list[Path] = sorted(frames_dir.glob("*.jpg"))

    # remove the keypoints as they're in the way during propagation
    rec.log(
        f"{log_paths['pinhole_path']}/include",
        rr.Clear(recursive=True),
    )
    rec.log(
        f"{log_paths['pinhole_path']}/exclude",
        rr.Clear(recursive=True),
    )
    
    VIDEO_SAM_PREDICTOR: SAM2VideoPredictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-tiny")
    with torch.inference_mode():
        frame_idx: int
        object_ids: list
        masks: Float32[torch.Tensor, "b 3 h w"]

        frame_idx, object_ids, masks = VIDEO_SAM_PREDICTOR.add_new_points_or_box(
            inference_state, frame_idx=0, obj_id=0, points=points, labels=labels
        )

        # propagate the prompts to get masklets throughout the video
        for frames_path, (frame_idx, object_ids, masks) in zip(
            frames_paths, VIDEO_SAM_PREDICTOR.propagate_in_video(inference_state), strict=True
        ):
            rec.set_time_sequence(log_paths["timeline_name"], frame_idx)
            masks: Bool[np.ndarray, "1 h w"] = (masks[0] > 0.0).numpy(force=True)
            bgr = cv2.imread(str(frames_path))
            rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
            depth_pred: RelativeDepthPrediction = DEPTH_PREDICTOR.__call__(rgb=rgb, K_33=None)

            log_relative_pred_rec(
                rec=rec,
                parent_log_path=log_paths["parent_log_path"],
                relative_pred=depth_pred,
                rgb_hw3=rgb,
                seg_mask_hw=masks[0].astype(np.uint8),
                remove_flying_pixels=True,
                jpeg_quality=90,
                depth_edge_threshold=0.1,
            )

            yield stream.read()


with gr.Blocks() as single_view_block:
    keypoints = gr.State(KeypointsContainer.empty())
    inference_state = gr.State({})
    frames_dir = gr.State(Path())
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Accordion("Your video IN", open=True) as video_in_drawer:
                video_in = gr.Video(label="Video IN", format=None)

            point_type = gr.Radio(
                label="point type",
                choices=["include", "exclude"],
                value="include",
                scale=1,
            )
            clear_points_btn = gr.Button("Clear Points", scale=1)
            get_initial_mask_btn = gr.Button("Get Initial Mask", scale=1)
            propagate_mask_btn = gr.Button("Propagate Mask", scale=1)
            stop_propagation_btn = gr.Button("Stop Propagation", scale=1)

        with gr.Column(scale=4):
            viewer = Rerun(
                streaming=True,
                panel_states={
                    "time": "collapsed",
                    "blueprint": "hidden",
                    "selection": "hidden",
                },
                height=700,
            )

    # We make a new recording id, and store it in a Gradio's session state.
    recording_id = gr.State()
    log_paths = gr.State({})

    input_components = PreprocessVideoComponents(
        video_file=video_in,
    )

    # triggered on video upload
    video_in.upload(
        fn=preprocess_video,
        inputs=input_components.to_list(),
        outputs=[video_in_drawer, viewer, inference_state, frames_dir, recording_id, log_paths],
    )

    viewer.selection_change(
        single_view_update_keypoints,
        inputs=[
            recording_id,
            point_type,
            keypoints,
            log_paths,
        ],
        outputs=[viewer, keypoints],
    )

    clear_points_btn.click(
        fn=reset_keypoints,
        inputs=[recording_id, keypoints, log_paths],
        outputs=[viewer, keypoints],
    )

    get_initial_mask_btn.click(
        fn=get_initial_mask,
        inputs=[recording_id, inference_state, keypoints, log_paths],
        outputs=[viewer],
    )

    propagate_event = propagate_mask_btn.click(
        fn=propagate_mask,
        inputs=[recording_id, inference_state, keypoints, frames_dir, log_paths],
        outputs=[viewer],
    )

    stop_propagation_btn.click(
        fn=lambda: None,
        inputs=[],
        outputs=[],
        cancels=[propagate_event],
    )