omar-abdelbary's picture
Update app.py
113f5f4 verified
import os
import logging
import gradio as gr
import requests
import pandas as pd
import openai
from openai import OpenAI
from smolagents import CodeAgent, DuckDuckGoSearchTool, tool
from smolagents.models import OpenAIServerModel
# --- Logging ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
logger = logging.getLogger(__name__)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_MODEL_ID = os.getenv("OPENAI_MODEL_ID", "gpt-4.1")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
raise RuntimeError("Please set OPENAI_API_KEY in your Space secrets.")
# --- Configure OpenAI SDK (for tools if needed) ---
openai.api_key = "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"
client = OpenAI()
# --- Tools ---
@tool
def summarize_query(query: str) -> str:
"""
Reframes an unclear search query to improve relevance.
Args:
query (str): The original search query.
Returns:
str: A concise, improved version.
"""
return f"Summarize and reframe: {query}"
@tool
def wikipedia_search(page: str) -> str:
"""
Fetches the summary extract of an English Wikipedia page.
Args:
page (str): e.g. 'Mercedes_Sosa_discography'
Returns:
str: The page’s extract text.
"""
try:
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{page}"
r = requests.get(url, timeout=10)
r.raise_for_status()
return r.json().get("extract", "")
except Exception as e:
logger.exception("Wikipedia lookup failed")
return f"Wikipedia error: {e}"
search_tool = DuckDuckGoSearchTool()
wiki_tool = wikipedia_search
summarize_tool = summarize_query
# --- ReACT Prompt ---
instruction_prompt = """
You are a ReACT agent with three tools:
• DuckDuckGoSearchTool(query: str)
• wikipedia_search(page: str)
• summarize_query(query: str)
Internally, for each question:
1. Thought: decide which tool to call.
2. Action: call the chosen tool.
3. Observation: record the result.
4. If empty/irrelevant:
Thought: retry with summarize_query + DuckDuckGoSearchTool.
Record new Observation.
5. Thought: integrate observations.
Finally, output your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
"""
# --- Build the Agent with OpenAIServerModel ---
model = OpenAIServerModel(
model_id=OPENAI_MODEL_ID,
api_key=OPENAI_API_KEY
)
smart_agent = CodeAgent(
tools=[search_tool, wiki_tool, summarize_tool],
model=model
)
# --- Gradio Wrapper ---
class BasicAgent:
def __init__(self):
logger.info("Initialized SmolAgent with OpenAI GPT-4.1")
def __call__(self, question: str) -> str:
if not question.strip():
return "AGENT ERROR: empty question"
prompt = instruction_prompt.strip() + "\n\nQUESTION: " + question.strip()
try:
return smart_agent.run(prompt)
except Exception as e:
logger.exception("Agent run error")
return f"AGENT ERROR: {e}"
# --- Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
if not profile:
return "Please log in to Hugging Face.", None
username = profile.username
space_id = os.getenv("SPACE_ID", "")
agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main"
agent = BasicAgent()
# fetch
try:
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
resp.raise_for_status()
questions = resp.json() or []
except Exception as e:
logger.exception("Failed fetch")
return f"Error fetching questions: {e}", None
logs, payload = [], []
for item in questions:
tid = item.get("task_id")
q = item.get("question")
if not tid or not q:
continue
ans = agent(q)
logs.append({"Task ID": tid, "Question": q, "Submitted Answer": ans})
payload.append({"task_id": tid, "submitted_answer": ans})
if not payload:
return "Agent did not produce any answers.", pd.DataFrame(logs)
# submit
try:
post = requests.post(
f"{DEFAULT_API_URL}/submit",
json={"username": username, "agent_code": agent_code, "answers": payload},
timeout=60
)
post.raise_for_status()
result = post.json()
status = (
f"Submission Successful!\n"
f"User: {result.get('username')}\n"
f"Score: {result.get('score','N/A')}%\n"
f"({result.get('correct_count','?')}/"
f"{result.get('total_attempted','?')})\n"
f"Message: {result.get('message','')}"
)
return status, pd.DataFrame(logs)
except Exception as e:
logger.exception("Submit failed")
return f"Submission Failed: {e}", pd.DataFrame(logs)
# --- Gradio App ---
with gr.Blocks() as demo:
gr.Markdown("# SmolAgent GAIA Runner 🚀")
gr.Markdown("""
**Instructions:**
1. Clone this space.
2. In Settings → Secrets, add `OPENAI_API_KEY` and (optionally) `OPENAI_MODEL_ID`.
3. Log in to Hugging Face.
4. Click **Run Evaluation & Submit All Answers**.
""")
gr.LoginButton()
btn = gr.Button("Run Evaluation & Submit All Answers")
out_status = gr.Textbox(label="Status", lines=5, interactive=False)
out_table = gr.DataFrame(label="Questions & Answers", wrap=True)
btn.click(run_and_submit_all, outputs=[out_status, out_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)