omar-abdelbary commited on
Commit
113f5f4
·
verified ·
1 Parent(s): bc2cec8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +162 -164
app.py CHANGED
@@ -1,196 +1,194 @@
1
  import os
 
 
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
 
 
 
 
 
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
 
 
 
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
 
 
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
 
 
 
 
 
26
  """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
 
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
 
 
42
  try:
43
- agent = BasicAgent()
 
 
 
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
 
 
 
 
 
 
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
 
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
 
 
 
 
106
  f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
 
111
  )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
  gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
+ import logging
3
+
4
  import gradio as gr
5
  import requests
 
6
  import pandas as pd
7
+ import openai
8
+ from openai import OpenAI
9
+
10
+ from smolagents import CodeAgent, DuckDuckGoSearchTool, tool
11
+ from smolagents.models import OpenAIServerModel
12
+
13
+ # --- Logging ---
14
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
15
+ logger = logging.getLogger(__name__)
16
 
 
17
  # --- Constants ---
18
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
19
+ OPENAI_MODEL_ID = os.getenv("OPENAI_MODEL_ID", "gpt-4.1")
20
+ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
21
+ if not OPENAI_API_KEY:
22
+ raise RuntimeError("Please set OPENAI_API_KEY in your Space secrets.")
23
 
24
+ # --- Configure OpenAI SDK (for tools if needed) ---
25
+ openai.api_key = "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"
26
+ client = OpenAI()
 
 
 
 
 
 
 
27
 
28
+ # --- Tools ---
29
+
30
+ @tool
31
+ def summarize_query(query: str) -> str:
32
  """
33
+ Reframes an unclear search query to improve relevance.
34
+
35
+ Args:
36
+ query (str): The original search query.
37
+
38
+ Returns:
39
+ str: A concise, improved version.
40
  """
41
+ return f"Summarize and reframe: {query}"
 
42
 
43
+ @tool
44
+ def wikipedia_search(page: str) -> str:
45
+ """
46
+ Fetches the summary extract of an English Wikipedia page.
 
 
47
 
48
+ Args:
49
+ page (str): e.g. 'Mercedes_Sosa_discography'
 
50
 
51
+ Returns:
52
+ str: The page’s extract text.
53
+ """
54
  try:
55
+ url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{page}"
56
+ r = requests.get(url, timeout=10)
57
+ r.raise_for_status()
58
+ return r.json().get("extract", "")
59
  except Exception as e:
60
+ logger.exception("Wikipedia lookup failed")
61
+ return f"Wikipedia error: {e}"
62
+
63
+ search_tool = DuckDuckGoSearchTool()
64
+ wiki_tool = wikipedia_search
65
+ summarize_tool = summarize_query
66
+
67
+ # --- ReACT Prompt ---
68
+
69
+ instruction_prompt = """
70
+ You are a ReACT agent with three tools:
71
+ • DuckDuckGoSearchTool(query: str)
72
+ • wikipedia_search(page: str)
73
+ • summarize_query(query: str)
74
+
75
+ Internally, for each question:
76
+ 1. Thought: decide which tool to call.
77
+ 2. Action: call the chosen tool.
78
+ 3. Observation: record the result.
79
+ 4. If empty/irrelevant:
80
+ Thought: retry with summarize_query + DuckDuckGoSearchTool.
81
+ Record new Observation.
82
+ 5. Thought: integrate observations.
83
+
84
+ Finally, output your answer with the following template:
85
+ FINAL ANSWER: [YOUR FINAL ANSWER].
86
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
87
+ If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
88
+ If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
89
+ If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
90
+
91
+ """
92
+
93
+ # --- Build the Agent with OpenAIServerModel ---
94
+
95
+ model = OpenAIServerModel(
96
+ model_id=OPENAI_MODEL_ID,
97
+ api_key=OPENAI_API_KEY
98
+ )
99
+
100
+ smart_agent = CodeAgent(
101
+ tools=[search_tool, wiki_tool, summarize_tool],
102
+ model=model
103
+ )
104
+
105
+ # --- Gradio Wrapper ---
106
+
107
+ class BasicAgent:
108
+ def __init__(self):
109
+ logger.info("Initialized SmolAgent with OpenAI GPT-4.1")
110
+
111
+ def __call__(self, question: str) -> str:
112
+ if not question.strip():
113
+ return "AGENT ERROR: empty question"
114
+ prompt = instruction_prompt.strip() + "\n\nQUESTION: " + question.strip()
115
+ try:
116
+ return smart_agent.run(prompt)
117
+ except Exception as e:
118
+ logger.exception("Agent run error")
119
+ return f"AGENT ERROR: {e}"
120
+
121
+ # --- Submission Logic ---
122
+
123
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
124
+ if not profile:
125
+ return "Please log in to Hugging Face.", None
126
+
127
+ username = profile.username
128
+ space_id = os.getenv("SPACE_ID", "")
129
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
130
+ agent = BasicAgent()
131
 
132
+ # fetch
 
133
  try:
134
+ resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
135
+ resp.raise_for_status()
136
+ questions = resp.json() or []
 
 
 
 
 
 
 
 
 
 
 
137
  except Exception as e:
138
+ logger.exception("Failed fetch")
139
+ return f"Error fetching questions: {e}", None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
+ logs, payload = [], []
142
+ for item in questions:
143
+ tid = item.get("task_id")
144
+ q = item.get("question")
145
+ if not tid or not q:
146
+ continue
147
+ ans = agent(q)
148
+ logs.append({"Task ID": tid, "Question": q, "Submitted Answer": ans})
149
+ payload.append({"task_id": tid, "submitted_answer": ans})
150
 
151
+ if not payload:
152
+ return "Agent did not produce any answers.", pd.DataFrame(logs)
 
 
153
 
154
+ # submit
 
155
  try:
156
+ post = requests.post(
157
+ f"{DEFAULT_API_URL}/submit",
158
+ json={"username": username, "agent_code": agent_code, "answers": payload},
159
+ timeout=60
160
+ )
161
+ post.raise_for_status()
162
+ result = post.json()
163
+ status = (
164
  f"Submission Successful!\n"
165
+ f"User: {result.get('username')}\n"
166
+ f"Score: {result.get('score','N/A')}%\n"
167
+ f"({result.get('correct_count','?')}/"
168
+ f"{result.get('total_attempted','?')})\n"
169
+ f"Message: {result.get('message','')}"
170
  )
171
+ return status, pd.DataFrame(logs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  except Exception as e:
173
+ logger.exception("Submit failed")
174
+ return f"Submission Failed: {e}", pd.DataFrame(logs)
 
 
175
 
176
+ # --- Gradio App ---
177
 
 
178
  with gr.Blocks() as demo:
179
+ gr.Markdown("# SmolAgent GAIA Runner 🚀")
180
+ gr.Markdown("""
181
+ **Instructions:**
182
+ 1. Clone this space.
183
+ 2. In Settings → Secrets, add `OPENAI_API_KEY` and (optionally) `OPENAI_MODEL_ID`.
184
+ 3. Log in to Hugging Face.
185
+ 4. Click **Run Evaluation & Submit All Answers**.
186
+ """)
 
 
 
 
 
 
 
 
187
  gr.LoginButton()
188
+ btn = gr.Button("Run Evaluation & Submit All Answers")
189
+ out_status = gr.Textbox(label="Status", lines=5, interactive=False)
190
+ out_table = gr.DataFrame(label="Questions & Answers", wrap=True)
191
+ btn.click(run_and_submit_all, outputs=[out_status, out_table])
 
 
 
 
 
 
 
192
 
193
  if __name__ == "__main__":
194
+ demo.launch(debug=True, share=False)