Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# This file is modified from https://github.com/haotian-liu/LLaVA/ | |
from typing import List, Optional, Tuple, Union | |
import os, os.path as osp | |
import torch | |
from transformers import ( | |
LlamaForCausalLM, | |
LlamaConfig, | |
PreTrainedModel, | |
AutoConfig, | |
AutoModel, | |
GenerationConfig, | |
PretrainedConfig, | |
PreTrainedModel, | |
) | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | |
from ..multimodal_encoder.builder import build_vision_tower | |
from ..multimodal_projector.builder import build_mm_projector | |
from ..configuration_llava import LlavaConfig | |
from ..utils import get_model_config | |
from .builder import build_llm_and_tokenizer | |
class LlavaLlamaConfig(LlavaConfig): | |
model_type = "llava_llama" | |
## FIXME we will follow the convention to add a new class for CausalLM in the future | |
class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel): | |
config_class = LlavaLlamaConfig | |
main_input_name = "input_embeds" | |
supports_gradient_checkpointing = True | |
def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None: | |
super().__init__(config) | |
return self.init_vlm(config=config, *args, **kwargs) | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
*model_args, | |
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
ignore_mismatched_sizes: bool = False, | |
force_download: bool = False, | |
local_files_only: bool = False, | |
token: Optional[Union[str, bool]] = None, | |
revision: str = "main", | |
use_safetensors: bool = None, | |
**kwargs, | |
): | |
if hasattr(cls, "load_pretrained"): | |
return cls.load_pretrained(pretrained_model_name_or_path, | |
*model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, | |
revision=revision, use_safetensors=use_safetensors, **kwargs | |
) | |
return super(LlavaLlamaModel).from_pretrained(pretrained_model_name_or_path, | |
*model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, | |
revision=revision, use_safetensors=use_safetensors, **kwargs) | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
images: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
self.freezed_module_patch() | |
if inputs_embeds is None: | |
( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids, position_ids, attention_mask, past_key_values, labels, images | |
) | |
# Note (kentang-mit@): we have a unit test for this function. | |
if self.training: | |
( | |
_, | |
new_position_ids, | |
new_attention_mask, | |
_, | |
new_inputs_embeds, | |
new_labels, | |
sorted_seqlens_in_batch, | |
) = self.repack_multimodal_data( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
) | |
new_input_ids = None | |
past_key_values = None | |
else: | |
new_attention_mask = attention_mask | |
new_position_ids = position_ids | |
new_inputs_embeds = inputs_embeds | |
new_labels = labels | |
sorted_seqlens_in_batch = attention_mask.sum(-1).int() | |
new_input_ids = input_ids | |
outputs = self.llm.forward( | |
input_ids=new_input_ids, | |
attention_mask=new_attention_mask, | |
position_ids=new_position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=new_inputs_embeds, | |
labels=new_labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
seqlens_in_batch=sorted_seqlens_in_batch, | |
) | |
return outputs | |
def generate( | |
self, | |
input_ids: Optional[torch.FloatTensor] = None, | |
images: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
**generation_kwargs, | |
): | |
if images is not None: | |
( | |
_, | |
_, | |
attention_mask, | |
_, | |
inputs_embeds, | |
_, | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids, None, attention_mask, None, None, images | |
) | |
else: | |
inputs_embeds = self.get_input_embeddings()(input_ids) | |
inputs_embeds = inputs_embeds.to(self.dtype) | |
outputs = self.llm.generate( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
**generation_kwargs | |
) | |
return outputs | |
AutoConfig.register("llava_llama", LlavaLlamaConfig) | |
AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel) | |