File size: 6,745 Bytes
e19aac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

# This file is modified from https://github.com/haotian-liu/LLaVA/


from typing import List, Optional, Tuple, Union
import os, os.path as osp
import torch

from transformers import (
    LlamaForCausalLM,
    LlamaConfig,
    PreTrainedModel,
    AutoConfig,
    AutoModel,
    GenerationConfig,
    PretrainedConfig,
    PreTrainedModel,
)

from transformers.modeling_outputs import CausalLMOutputWithPast
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from ..multimodal_encoder.builder import build_vision_tower
from ..multimodal_projector.builder import build_mm_projector
from ..configuration_llava import LlavaConfig
from ..utils import get_model_config
from .builder import build_llm_and_tokenizer


class LlavaLlamaConfig(LlavaConfig):
    model_type = "llava_llama"

## FIXME we will follow the convention to add a new class for CausalLM in the future
class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel):
    config_class = LlavaLlamaConfig
    main_input_name = "input_embeds"
    supports_gradient_checkpointing = True
    
    def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None:
        super().__init__(config)
        return self.init_vlm(config=config, *args, **kwargs)
        
    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
        if hasattr(cls, "load_pretrained"):
            return cls.load_pretrained(pretrained_model_name_or_path, 
                *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, 
                revision=revision, use_safetensors=use_safetensors, **kwargs
            )
        return super(LlavaLlamaModel).from_pretrained(pretrained_model_name_or_path, 
            *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, 
            revision=revision, use_safetensors=use_safetensors, **kwargs)    

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        images: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        self.freezed_module_patch()
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids, position_ids, attention_mask, past_key_values, labels, images
            )
        # Note (kentang-mit@): we have a unit test for this function.
        if self.training:
            (
                _,
                new_position_ids,
                new_attention_mask,
                _,
                new_inputs_embeds,
                new_labels,
                sorted_seqlens_in_batch,
            ) = self.repack_multimodal_data(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
            )
            new_input_ids = None
            past_key_values = None
        else:
            new_attention_mask = attention_mask
            new_position_ids = position_ids
            new_inputs_embeds = inputs_embeds
            new_labels = labels
            sorted_seqlens_in_batch = attention_mask.sum(-1).int()
            new_input_ids = input_ids

        outputs = self.llm.forward(
            input_ids=new_input_ids,
            attention_mask=new_attention_mask,
            position_ids=new_position_ids,
            past_key_values=past_key_values,
            inputs_embeds=new_inputs_embeds,
            labels=new_labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            seqlens_in_batch=sorted_seqlens_in_batch,
        )
        return outputs
    
    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.FloatTensor] = None,
        images: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        **generation_kwargs,
    ):
        if images is not None:
            (
                _,
                _,
                attention_mask,
                _,
                inputs_embeds,
                _,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids, None, attention_mask, None, None, images
            )
        else:
            inputs_embeds = self.get_input_embeddings()(input_ids)
        inputs_embeds = inputs_embeds.to(self.dtype)
        
        outputs = self.llm.generate(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            **generation_kwargs
        )
        return outputs
        

AutoConfig.register("llava_llama", LlavaLlamaConfig)
AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel)