Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import torch.nn as nn | |
import re | |
import torch | |
import torch.nn.functional as F | |
# import deepspeed | |
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel | |
# from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled | |
def is_deepspeed_zero3_enabled(*args, **kwargs): | |
return False | |
class ContextProviderConfig(PretrainedConfig): | |
model_type = "context_provider" | |
def __init__( | |
self, | |
context_provider_type: str=None, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
num_mask_channels=0, | |
image_size=224, | |
patch_size=16, | |
hidden_act="gelu_pytorch_tanh", | |
layer_norm_eps=1e-6, | |
attention_dropout=0.0, | |
zero_init_output=True, | |
residual_dropout=0.0, | |
context_image_as_queries=False, | |
context_provider_layer_indices=None, | |
masked_cross_attn=False, | |
crop_position_single_embedding=False, | |
trainable_crop_position_embedding=True, | |
crop_embedding_mode="add", | |
treat_image_as_cimage=False, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.context_provider_type = context_provider_type | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.num_mask_channels = num_mask_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.zero_init_output = zero_init_output | |
self.residual_dropout = residual_dropout | |
self.context_image_as_queries = context_image_as_queries | |
# cross_attn_end_to_all | |
# the `num_hidden_layers` should be the same as the one in the vision tower | |
self.num_hidden_layers = num_hidden_layers | |
self.context_provider_layer_indices = context_provider_layer_indices | |
self.masked_cross_attn = masked_cross_attn | |
# If enabled, crop_position_embedding (delta to full pos) will be updated during training. | |
self.trainable_crop_position_embedding = trainable_crop_position_embedding | |
# If enabled, crop_position_embedding (delta to full pos) will be a single embedding for all positions. | |
self.crop_position_single_embedding = crop_position_single_embedding | |
# add: delta. replace: do not add the original positional embedding | |
self.crop_embedding_mode = crop_embedding_mode | |
# If True, the input image will be treated as a cimage (with mask as full 1s) | |
self.treat_image_as_cimage = treat_image_as_cimage | |
# Context Provider | |
from transformers.activations import ACT2FN | |
from typing import Any, Optional, Tuple, Union | |
class ContextProviderCrossAttention(nn.Module): | |
"""Multi-headed cross-attention from 'Attention Is All You Need' paper""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
batch_size, q_len, _ = hidden_states.size() | |
batch_size, kv_len, _ = encoder_hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(encoder_hidden_states) | |
value_states = self.v_proj(encoder_hidden_states) | |
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(batch_size, kv_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(batch_size, kv_len, self.num_heads, self.head_dim).transpose(1, 2) | |
k_v_seq_len = key_states.shape[-2] | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | |
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# Visualizations (-inf are shown as white) | |
# import matplotlib.pyplot as plt | |
# plt.imshow(attention_mask[0, 0, 0].view(27, 27).detach().cpu().numpy()) | |
# plt.title("Attention mask") | |
# plt.colorbar() | |
# plt.show() | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
# Visualizations: show the attention weights of the first head, with the first query | |
# import matplotlib.pyplot as plt | |
# plt.imshow(attn_weights[0, 0, 0].view(27, 27).detach().cpu().numpy()) | |
# plt.title("Attention weights") | |
# plt.colorbar() | |
# plt.show() | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights | |
class ContextProviderMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
def get_token_mask_bias(mask, patch_size): | |
# Note: mask should be (0, 1) | |
with torch.no_grad(): | |
# Add a channel dimension and perform conv | |
# mask_tokens_after_conv: (B, 1, H, W), example dimension: [1, 1, 27, 27] | |
mask_tokens_after_conv = F.conv2d( | |
input=mask[:, None], | |
weight=torch.ones( | |
(1, 1, patch_size, patch_size), | |
device=mask.device, dtype=mask.dtype | |
), | |
bias=None, | |
stride=(patch_size, patch_size), | |
padding="valid" | |
) | |
token_mask_bias = torch.zeros_like(mask_tokens_after_conv) | |
token_mask_bias.masked_fill_(mask_tokens_after_conv < 1e-5, float("-inf")) | |
token_mask_bias = token_mask_bias.flatten(1) | |
# Flattened dimension: (1, 729) | |
return token_mask_bias | |
def attn_mask_from_cimage_concatenated(cimage_concatenated, patch_size): | |
# Use the mask from input image (4th channel) | |
mask_normalized = cimage_concatenated[:, 3] | |
mask_unnormalized = (mask_normalized + 1) / 2 | |
# (1, 729) | |
token_mask_bias = get_token_mask_bias(mask_unnormalized, patch_size=patch_size) | |
# attn_mask: (B, 1, Q, KV) | |
# print("Token positions:", token_mask.nonzero()) | |
# Obtain token mask in the bias format: in mask 0, out of mask -inf | |
q_kv = token_mask_bias.shape[-1] | |
attn_mask_bias = token_mask_bias[:, None, None, :].repeat(1, 1, q_kv, 1) | |
# Visualizations | |
# print(f"token_mask_bias shape: {token_mask_bias.shape}, attn_mask_bias shape: {attn_mask_bias.shape}") | |
# import matplotlib.pyplot as plt | |
# plt.imshow(attn_mask_bias[0, 0, 0].view(27, 27).detach().cpu().numpy()) | |
# plt.title("Attention mask (outside)") | |
# plt.show() | |
return attn_mask_bias | |
# From SiglipEncoderLayer. We would like to modify this to cross-attention. | |
class CrossAttnEncoderLayer(nn.Module): | |
def __init__(self, config: ContextProviderConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.cross_attn = ContextProviderCrossAttention(config) | |
self.residual_dropout = nn.Dropout(config.residual_dropout) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = ContextProviderMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
if config.zero_init_output: | |
# TODO: alternatively, we could parameterize with an MLP | |
# These factors are initialized with 0 (so only residual passes through) | |
if config.context_provider_type != "cross_attn_at_the_end": | |
self.register_parameter("attn_factor", nn.Parameter(torch.zeros((1,)))) | |
self.register_parameter("mlp_factor", nn.Parameter(torch.zeros((1,)))) | |
else: | |
# Use scalar tensor for compatibility | |
self.register_parameter("attn_factor", nn.Parameter(torch.zeros((1,)).view(()))) | |
self.register_parameter("mlp_factor", nn.Parameter(torch.zeros((1,)).view(()))) | |
else: | |
self.attn_factor = 1. | |
self.mlp_factor = 1. | |
# Ignore copy | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): | |
Input to the layer of shape `(batch, seq_len, embed_dim)`. | |
attention_mask (`torch.FloatTensor`): | |
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | |
output_attentions (`bool`, *optional*, defaults to `False`): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.cross_attn( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
) | |
# Dropping the residual: let the model leverage more on the context | |
hidden_states = self.residual_dropout(residual) + self.attn_factor * hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + self.mlp_factor * hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class CrossAttnContextProviderEndToAll(nn.Module): | |
def __init__(self, config: ContextProviderConfig): | |
super().__init__() | |
self.layers = nn.ModuleList([ | |
CrossAttnEncoderLayer(config) for i in enumerate(range(config.num_hidden_layers)) if config.context_provider_layer_indices is None or i in config.context_provider_layer_indices | |
]) | |
self.patch_size = config.patch_size | |
self.masked_cross_attn = config.masked_cross_attn | |
def forward(self, context_image_features, cimage_concatenated, vision_tower): | |
# Use the mask from input image (4th channel) | |
if self.masked_cross_attn: | |
attn_mask = attn_mask_from_cimage_concatenated(cimage_concatenated, patch_size=self.patch_size) | |
else: | |
attn_mask = None | |
detail_raw_image = cimage_concatenated[:, 4:, ...] | |
# NOTE: when using context image as queries, the context image was swapped with the detail image before passing into the context provider | |
outputs = vision_tower(detail_raw_image, context_provider_layers=self.layers, contexts=context_image_features, cross_attention_mask=attn_mask) | |
return outputs | |
class ContextProvider(PreTrainedModel): | |
config_class = ContextProviderConfig | |
def __init__( | |
self, context_provider_cfg: ContextProviderConfig, config: PretrainedConfig | |
): | |
super().__init__(context_provider_cfg) | |
self.context_image_as_queries = context_provider_cfg.context_image_as_queries | |
self.context_provider_type = context_provider_type = context_provider_cfg.context_provider_type | |
self.treat_image_as_cimage = context_provider_cfg.treat_image_as_cimage | |
if self.context_image_as_queries: | |
assert not context_provider_cfg.masked_cross_attn, "Masked cross-attention not implemented when using context image as queries." | |
assert "concat" not in context_provider_type, "Concat not implemented when using context image as queries." | |
if context_provider_type == "cross_attn_end_to_all": | |
# Information flow: end of context features -> all detail features | |
self.context_provider_module = CrossAttnContextProviderEndToAll(context_provider_cfg) | |
else: | |
raise ValueError(f"Unknown context provider type: {context_provider_type}") | |
def forward(self, cimage_full_features=None, cimage_crop_features=None, cimage_concatenated=None, vision_tower=None): | |
if self.context_provider_type == "cross_attn_end_to_all": | |
assert cimage_full_features.shape[0] == cimage_concatenated.shape[0], f"shape mismatches: {cimage_full_features.shape[0]} != {cimage_concatenated.shape[0]}" | |
return self.context_provider_module(context_image_features=cimage_full_features, cimage_concatenated=cimage_concatenated, vision_tower=vision_tower) | |
else: | |
raise ValueError(f"Unknown context provider type: {context_provider_type}") | |
AutoConfig.register("context_provider", ContextProviderConfig) | |
AutoModel.register(ContextProviderConfig, ContextProvider) | |