Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,308 Bytes
e19aac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import torch.nn as nn
import re
import torch
import torch.nn.functional as F
# import deepspeed
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
# from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
def is_deepspeed_zero3_enabled(*args, **kwargs):
return False
class ContextProviderConfig(PretrainedConfig):
model_type = "context_provider"
def __init__(
self,
context_provider_type: str=None,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
num_mask_channels=0,
image_size=224,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
zero_init_output=True,
residual_dropout=0.0,
context_image_as_queries=False,
context_provider_layer_indices=None,
masked_cross_attn=False,
crop_position_single_embedding=False,
trainable_crop_position_embedding=True,
crop_embedding_mode="add",
treat_image_as_cimage=False,
**kwargs,
):
super().__init__(**kwargs)
self.context_provider_type = context_provider_type
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.num_mask_channels = num_mask_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.zero_init_output = zero_init_output
self.residual_dropout = residual_dropout
self.context_image_as_queries = context_image_as_queries
# cross_attn_end_to_all
# the `num_hidden_layers` should be the same as the one in the vision tower
self.num_hidden_layers = num_hidden_layers
self.context_provider_layer_indices = context_provider_layer_indices
self.masked_cross_attn = masked_cross_attn
# If enabled, crop_position_embedding (delta to full pos) will be updated during training.
self.trainable_crop_position_embedding = trainable_crop_position_embedding
# If enabled, crop_position_embedding (delta to full pos) will be a single embedding for all positions.
self.crop_position_single_embedding = crop_position_single_embedding
# add: delta. replace: do not add the original positional embedding
self.crop_embedding_mode = crop_embedding_mode
# If True, the input image will be treated as a cimage (with mask as full 1s)
self.treat_image_as_cimage = treat_image_as_cimage
# Context Provider
from transformers.activations import ACT2FN
from typing import Any, Optional, Tuple, Union
class ContextProviderCrossAttention(nn.Module):
"""Multi-headed cross-attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, q_len, _ = hidden_states.size()
batch_size, kv_len, _ = encoder_hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(encoder_hidden_states)
value_states = self.v_proj(encoder_hidden_states)
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, kv_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, kv_len, self.num_heads, self.head_dim).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# Visualizations (-inf are shown as white)
# import matplotlib.pyplot as plt
# plt.imshow(attention_mask[0, 0, 0].view(27, 27).detach().cpu().numpy())
# plt.title("Attention mask")
# plt.colorbar()
# plt.show()
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
# Visualizations: show the attention weights of the first head, with the first query
# import matplotlib.pyplot as plt
# plt.imshow(attn_weights[0, 0, 0].view(27, 27).detach().cpu().numpy())
# plt.title("Attention weights")
# plt.colorbar()
# plt.show()
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class ContextProviderMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
def get_token_mask_bias(mask, patch_size):
# Note: mask should be (0, 1)
with torch.no_grad():
# Add a channel dimension and perform conv
# mask_tokens_after_conv: (B, 1, H, W), example dimension: [1, 1, 27, 27]
mask_tokens_after_conv = F.conv2d(
input=mask[:, None],
weight=torch.ones(
(1, 1, patch_size, patch_size),
device=mask.device, dtype=mask.dtype
),
bias=None,
stride=(patch_size, patch_size),
padding="valid"
)
token_mask_bias = torch.zeros_like(mask_tokens_after_conv)
token_mask_bias.masked_fill_(mask_tokens_after_conv < 1e-5, float("-inf"))
token_mask_bias = token_mask_bias.flatten(1)
# Flattened dimension: (1, 729)
return token_mask_bias
def attn_mask_from_cimage_concatenated(cimage_concatenated, patch_size):
# Use the mask from input image (4th channel)
mask_normalized = cimage_concatenated[:, 3]
mask_unnormalized = (mask_normalized + 1) / 2
# (1, 729)
token_mask_bias = get_token_mask_bias(mask_unnormalized, patch_size=patch_size)
# attn_mask: (B, 1, Q, KV)
# print("Token positions:", token_mask.nonzero())
# Obtain token mask in the bias format: in mask 0, out of mask -inf
q_kv = token_mask_bias.shape[-1]
attn_mask_bias = token_mask_bias[:, None, None, :].repeat(1, 1, q_kv, 1)
# Visualizations
# print(f"token_mask_bias shape: {token_mask_bias.shape}, attn_mask_bias shape: {attn_mask_bias.shape}")
# import matplotlib.pyplot as plt
# plt.imshow(attn_mask_bias[0, 0, 0].view(27, 27).detach().cpu().numpy())
# plt.title("Attention mask (outside)")
# plt.show()
return attn_mask_bias
# From SiglipEncoderLayer. We would like to modify this to cross-attention.
class CrossAttnEncoderLayer(nn.Module):
def __init__(self, config: ContextProviderConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.cross_attn = ContextProviderCrossAttention(config)
self.residual_dropout = nn.Dropout(config.residual_dropout)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = ContextProviderMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
if config.zero_init_output:
# TODO: alternatively, we could parameterize with an MLP
# These factors are initialized with 0 (so only residual passes through)
if config.context_provider_type != "cross_attn_at_the_end":
self.register_parameter("attn_factor", nn.Parameter(torch.zeros((1,))))
self.register_parameter("mlp_factor", nn.Parameter(torch.zeros((1,))))
else:
# Use scalar tensor for compatibility
self.register_parameter("attn_factor", nn.Parameter(torch.zeros((1,)).view(())))
self.register_parameter("mlp_factor", nn.Parameter(torch.zeros((1,)).view(())))
else:
self.attn_factor = 1.
self.mlp_factor = 1.
# Ignore copy
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.cross_attn(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
# Dropping the residual: let the model leverage more on the context
hidden_states = self.residual_dropout(residual) + self.attn_factor * hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.mlp_factor * hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class CrossAttnContextProviderEndToAll(nn.Module):
def __init__(self, config: ContextProviderConfig):
super().__init__()
self.layers = nn.ModuleList([
CrossAttnEncoderLayer(config) for i in enumerate(range(config.num_hidden_layers)) if config.context_provider_layer_indices is None or i in config.context_provider_layer_indices
])
self.patch_size = config.patch_size
self.masked_cross_attn = config.masked_cross_attn
def forward(self, context_image_features, cimage_concatenated, vision_tower):
# Use the mask from input image (4th channel)
if self.masked_cross_attn:
attn_mask = attn_mask_from_cimage_concatenated(cimage_concatenated, patch_size=self.patch_size)
else:
attn_mask = None
detail_raw_image = cimage_concatenated[:, 4:, ...]
# NOTE: when using context image as queries, the context image was swapped with the detail image before passing into the context provider
outputs = vision_tower(detail_raw_image, context_provider_layers=self.layers, contexts=context_image_features, cross_attention_mask=attn_mask)
return outputs
class ContextProvider(PreTrainedModel):
config_class = ContextProviderConfig
def __init__(
self, context_provider_cfg: ContextProviderConfig, config: PretrainedConfig
):
super().__init__(context_provider_cfg)
self.context_image_as_queries = context_provider_cfg.context_image_as_queries
self.context_provider_type = context_provider_type = context_provider_cfg.context_provider_type
self.treat_image_as_cimage = context_provider_cfg.treat_image_as_cimage
if self.context_image_as_queries:
assert not context_provider_cfg.masked_cross_attn, "Masked cross-attention not implemented when using context image as queries."
assert "concat" not in context_provider_type, "Concat not implemented when using context image as queries."
if context_provider_type == "cross_attn_end_to_all":
# Information flow: end of context features -> all detail features
self.context_provider_module = CrossAttnContextProviderEndToAll(context_provider_cfg)
else:
raise ValueError(f"Unknown context provider type: {context_provider_type}")
def forward(self, cimage_full_features=None, cimage_crop_features=None, cimage_concatenated=None, vision_tower=None):
if self.context_provider_type == "cross_attn_end_to_all":
assert cimage_full_features.shape[0] == cimage_concatenated.shape[0], f"shape mismatches: {cimage_full_features.shape[0]} != {cimage_concatenated.shape[0]}"
return self.context_provider_module(context_image_features=cimage_full_features, cimage_concatenated=cimage_concatenated, vision_tower=vision_tower)
else:
raise ValueError(f"Unknown context provider type: {context_provider_type}")
AutoConfig.register("context_provider", ContextProviderConfig)
AutoModel.register(ContextProviderConfig, ContextProvider)
|