Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os, sys, os.path as osp | |
import warnings | |
from abc import ABC, abstractmethod | |
import torch, logging | |
from transformers import ( | |
AutoTokenizer, | |
AutoModel, | |
AutoModelForCausalLM, | |
AutoConfig, | |
BitsAndBytesConfig, | |
PretrainedConfig, | |
PreTrainedModel, | |
) | |
from .constants import ( | |
DEFAULT_IM_END_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IMAGE_PATCH_TOKEN, | |
IGNORE_INDEX, | |
IMAGE_TOKEN_INDEX, | |
MASK_TOKEN_INDEX, | |
) | |
from collections import OrderedDict | |
from .utils import get_model_config | |
from .language_model.builder import build_llm_and_tokenizer | |
from .multimodal_encoder.builder import build_vision_tower, build_context_provider | |
from .multimodal_projector.builder import build_mm_projector | |
from .configuration_llava import LlavaConfig | |
from transformers.modeling_utils import ContextManagers, no_init_weights | |
## TODO decide whether should we use metaclass | |
class LlavaMetaModel(ABC): | |
def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs): | |
# TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation. | |
if hasattr(self, "llm") or hasattr(self, "vision_tower") or hasattr(self, "mm_projector"): | |
# already initialized, skipped | |
return | |
model_dtype = getattr(config, "model_dtype", "torch.float16") | |
if not hasattr(config, "model_dtype"): | |
warnings.warn("model_dtype not found in config, defaulting to torch.float16.") | |
config.model_dtype = model_dtype | |
# print("init_vlm(): config", config); input("DEBUG init_vlm") | |
cfgs = get_model_config(config) | |
# Only the first three are required. Others are optional. | |
llm_cfg, vision_tower_cfg, mm_projector_cfg, mask_encoder_cfg, context_provider_cfg = cfgs | |
if llm_cfg is None or vision_tower_cfg is None or mm_projector_cfg is None: | |
raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.") | |
# print("init_vlm():", cfgs); input("DEBUG init_vlm") | |
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG init_vlm") | |
self.llm, self.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs) | |
self.vision_tower = build_vision_tower(vision_tower_cfg, config) | |
self.mm_projector = build_mm_projector(mm_projector_cfg, config) | |
self.context_provider = build_context_provider(context_provider_cfg, config) if context_provider_cfg is not None else None | |
self.post_config() | |
self.is_loaded = True | |
assert ( | |
self.llm is not None or self.vision_tower is not None or self.mm_projector is not None | |
), "At least one of the components must be instantiated." | |
def load_from_config(cls, model_path_or_config, *args, **kwargs): | |
pass | |
## FIXME we will use this function to load model in the future | |
def load_pretrained(cls, model_path_or_config, *args, **kwargs): | |
kwargs.pop("config", None) | |
if isinstance(model_path_or_config, str): | |
config = AutoConfig.from_pretrained(model_path_or_config) | |
elif isinstance(model_path_or_config, LlavaConfig): | |
config = model_path_or_config | |
else: | |
raise NotImplementedError(f"wrong type, {type(model_path_or_config)} \ | |
{isinstance(model_path_or_config, LlavaConfig)}") | |
model_dtype = getattr(config, "model_dtype", "torch.float16") | |
if not hasattr(config, "model_dtype"): | |
warnings.warn("model_dtype not found in config, defaulting to torch.float16.") | |
config.model_dtype = model_dtype | |
cfgs = get_model_config(config) | |
# Only the first three are required. Others are optional. | |
llm_cfg, vision_tower_cfg, mm_projector_cfg, mask_encoder_cfg, context_provider_cfg = cfgs | |
if llm_cfg is None or vision_tower_cfg is None or mm_projector_cfg is None: | |
raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.") | |
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained") | |
with ContextManagers([no_init_weights(_enable=True),]): | |
vlm = cls(config, *args, **kwargs) | |
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained finish") | |
if hasattr(vlm, "llm") or hasattr(vlm, "vision_tower") or hasattr(vlm, "mm_projector"): | |
if vlm.is_loaded: | |
return vlm | |
vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs) | |
vlm.vision_tower = build_vision_tower(vision_tower_cfg, config) | |
vlm.mm_projector = build_mm_projector(mm_projector_cfg, config) | |
if mask_encoder_cfg is not None: | |
raise NotImplementedError("Mask encoder is not supported.") | |
vlm.context_provider = build_context_provider(context_provider_cfg, config) if context_provider_cfg is not None else None | |
self.post_config() | |
self.is_loaded = True | |
# FIXME(ligeng, yunhao): llm should never be none here. | |
assert ( | |
vlm.llm is not None or vlm.vision_tower is not None or vlm.mm_projector is not None | |
), "At least one of the components must be instantiated." | |
return vlm | |
## FIXME we will use this function to save the model in the future | |
def save_pretrained(self, output_dir, state_dict=None): | |
if state_dict is None: | |
# other wise fetch from deepspeed | |
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled) | |
state_dict = self.state_dict() | |
if getattr(self, "tokenizer", None): | |
self.tokenizer.save_pretrained(osp.join(output_dir, "llm")) | |
if self.get_llm(): | |
print(f"saving llm to {osp.join(output_dir, 'llm')}") | |
self.llm.config._name_or_path = osp.join(output_dir, "llm") | |
llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k}) | |
self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict) | |
self.config.llm_cfg = self.llm.config | |
if self.get_vision_tower() and "radio" not in self.get_vision_tower().__class__.__name__.lower(): | |
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}") | |
self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower") | |
vision_tower_state_dict = OrderedDict( | |
{k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k} | |
) | |
self.vision_tower.vision_tower.save_pretrained( | |
os.path.join(output_dir, "vision_tower"), | |
state_dict=vision_tower_state_dict, | |
) | |
self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower")) | |
self.config.vision_tower_cfg = self.vision_tower.config | |
if hasattr(self.config.vision_tower_cfg, 'auto_map'): | |
delattr(self.config.vision_tower_cfg, 'auto_map') | |
if self.get_mm_projector(): | |
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}") | |
self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector") | |
mm_projector_state_dict = OrderedDict( | |
{k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k} | |
) | |
self.mm_projector.save_pretrained( | |
os.path.join(output_dir, "mm_projector"), | |
state_dict=mm_projector_state_dict, | |
) | |
self.config.mm_projector_cfg = self.mm_projector.config | |
if self.get_context_provider(): | |
print(f"saving context_provider to {osp.join(output_dir, 'context_provider')}") | |
self.context_provider.config._name_or_path = osp.join(output_dir, "context_provider") | |
context_provider_state_dict = OrderedDict( | |
{k.split("context_provider.")[-1]: v for k, v in state_dict.items() if "context_provider" in k} | |
) | |
self.context_provider.save_pretrained( | |
os.path.join(output_dir, "context_provider"), | |
state_dict=context_provider_state_dict, | |
) | |
self.config.context_provider_cfg = self.context_provider.config | |
## update and save top-level config | |
self.config._name_or_path = output_dir | |
self.config.architectures = [self.__class__.__name__] | |
self.config.save_pretrained(output_dir) | |
def get_llm(self): | |
llm = getattr(self, "llm", None) | |
if type(llm) is list: | |
llm = llm[0] | |
return llm | |
def get_lm_head(self): | |
lm_head = getattr(self.get_llm(), "lm_head", None) | |
return lm_head | |
def get_vision_tower(self): | |
vision_tower = getattr(self, "vision_tower", None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def get_mm_projector(self): | |
mm_projector = getattr(self, "mm_projector", None) | |
if type(mm_projector) is list: | |
mm_projector = mm_projector[0] | |
return mm_projector | |
def get_context_provider(self): | |
context_provider = getattr(self, "context_provider", None) | |
return context_provider | |
def post_config(self): | |
self.training = self.get_llm().training | |
## configuration | |
if getattr(self.config, "llm_cfg", None) is None: | |
self.config.llm_cfg = self.llm.config | |
if getattr(self.config, "vision_tower_cfg", None) is None: | |
self.config.vision_tower_cfg = self.vision_tower.config | |
if getattr(self.config, "mm_projector_cfg", None) is None: | |
self.config.mm_projector_cfg = self.mm_projector.config | |
if getattr(self.config, "context_provider_cfg", None) is None and self.context_provider is not None: | |
self.config.context_provider_cfg = self.context_provider.config | |
def freezed_module_patch(self): | |
''' | |
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules. | |
''' | |
if self.training: | |
if self.get_llm() and not getattr(self.config, "tune_language_model", False): | |
logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.") | |
if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False): | |
self.get_vision_tower().eval() | |
if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False): | |
self.get_mm_projector().eval() | |
if self.get_context_provider() and not getattr(self.config, "tune_context_provider", False): | |
self.get_context_provider().eval() | |
def encode_images(self, images): | |
image_features = self.get_vision_tower()(images) | |
image_features = self.get_mm_projector()(image_features) | |
return image_features | |
def encode_images_with_context(self, images): | |
context_provider = self.get_context_provider() | |
# If the channels completely match, they are cimage (image with context). | |
cimage_mask = torch.any((images[:, :4, ...] != images[:, 4:, ...]).flatten(start_dim=1), dim=1) | |
if context_provider.treat_image_as_cimage: | |
# If the context provider treats the image as cimage, then all images are cimage. | |
cimage_mask[:] = True | |
if context_provider.context_image_as_queries: | |
# Swap the crop image and full image since the model uses the full image as queries by default | |
images = torch.cat((images[:, 4:, ...], images[:, :4, ...]), dim=1) | |
# Process the first 4 channels for all images: for image it's the image, for cimage it's the full image | |
vision_tower = self.get_vision_tower() | |
# Encode context images (full images) | |
image_features = vision_tower(images[:, :4, ...]).to(self.device) | |
# Each cimage has 8 channels (full and crop concatenated) | |
cimage_concatenated = images[cimage_mask] | |
cimage_full_features = image_features[cimage_mask] | |
if context_provider.context_provider_type == "cross_attn_end_to_all": | |
cimage_features = self.context_provider( | |
cimage_full_features=cimage_full_features, | |
cimage_concatenated=cimage_concatenated, | |
vision_tower=vision_tower | |
).to(self.device) | |
elif context_provider.context_provider_type == "concat": | |
# Full features of cimages are computed but not used. | |
cimage_features = self.context_provider( | |
cimage_concatenated=cimage_concatenated, | |
vision_tower=vision_tower | |
).to(self.device) | |
else: | |
raise NotImplementedError(f"Context provider type {context_provider.context_provider_type} not implemented.") | |
# Put cimage_features into image_features | |
image_features[cimage_mask] = cimage_features | |
# Project to the llm space | |
image_features = self.get_mm_projector()(image_features) | |
return image_features | |
## @yunhao: is there a better way to handle function call and attributes for llm? | |
## support beam search | |
def _temporary_reorder_cache(self, past_key_values, sorted_idx): | |
return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx) | |
def get_input_embeddings(self): | |
return self.get_llm().get_input_embeddings() | |
def get_output_embeddings(self): | |
return self.get_llm().get_output_embeddings() | |
def resize_token_embeddings(self, embed_size): | |
self.get_llm().resize_token_embeddings(embed_size) | |
class LlavaMetaForCausalLM(ABC): | |
"""This class is originally implemented by the LLaVA team and | |
modified by Haotian Tang and Jason Lu based on Ji Lin's implementation | |
to support multiple images and input packing.""" | |
## TODO move the forward function here if there is no need to override it | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, position_ids, attention_mask, past_key_values, labels, images | |
): | |
vision_tower = self.get_vision_tower() | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
if ( | |
past_key_values is not None | |
and vision_tower is not None | |
and images is not None | |
and input_ids.shape[1] == 1 | |
): | |
target_shape = past_key_values[-1][-1].shape[-2] + 1 | |
attention_mask = torch.cat( | |
( | |
attention_mask, | |
torch.ones( | |
( | |
attention_mask.shape[0], | |
target_shape - attention_mask.shape[1], | |
), | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
), | |
), | |
dim=1, | |
) | |
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 | |
return ( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
None, | |
labels, | |
) | |
# handle different image dtypes for packing | |
if type(images) is list: | |
images = torch.cat(images, dim=0) | |
elif images.ndim == 5: # batch_size x seq_len x image_channels | |
images = images.flatten(0, 1) | |
if getattr(self, "context_provider", None): | |
image_features = self.encode_images_with_context(images) | |
else: | |
# Since we slice it with index below, turning it into a list splits things by the first index which does not result in data copy or degrade performance. | |
# Example dimension: [1, 196, 2560] | |
assert images.shape[1] <= 4, f"images have more than 4 channels, but context provider is not included" | |
image_features = self.encode_images(images).to(self.device) | |
# Note (kentang-mit@): image start / end is not implemented here to support pretraining. | |
if getattr(self.config, "turn_mm_projector", False) and getattr(self.config, "mm_use_im_start_end", False): | |
raise NotImplementedError | |
# Let's just add dummy tensors if they do not exist, | |
# it is a headache to deal with None all the time. | |
# But it is not ideal, and if you have a better idea, | |
# please open an issue / submit a PR, thanks. | |
_labels = labels | |
_position_ids = position_ids | |
_attention_mask = attention_mask | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) | |
else: | |
attention_mask = attention_mask.bool() | |
if position_ids is None: | |
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) | |
if labels is None: | |
labels = torch.full_like(input_ids, IGNORE_INDEX) | |
# remove the padding using attention_mask | |
input_ids_copy = input_ids.clone() | |
# kentang-mit@: Otherwise tokenizer out of bounds. Embeddings of image tokens will not be used. | |
input_ids_copy[input_ids_copy == IMAGE_TOKEN_INDEX] = 0 | |
input_embeds = self.llm.model.embed_tokens(input_ids_copy) | |
input_ids = [ | |
cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask) | |
] | |
input_embeds_1 = [ | |
cur_input_embeds[cur_attention_mask] | |
for cur_input_embeds, cur_attention_mask in zip(input_embeds, attention_mask) | |
] | |
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] | |
new_input_embeds = [] | |
new_labels = [] | |
cur_image_idx = 0 | |
# print("BEFORE BATCH LOOP:", len(input_ids), input_ids[0].shape, input_ids[0].device, [(x == IMAGE_TOKEN_INDEX).sum() for x in input_ids]) | |
# kentang-mit@: If some part of the model is executed in the loop, the the loop length needs to be a constant. | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
cur_input_ids = input_ids[batch_idx] | |
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() | |
if num_images == 0: | |
cur_image_features = image_features[0] | |
# cur_input_embeds_1 = self.get_llm().embed_tokens(cur_input_ids) | |
cur_input_embeds_1 = input_embeds_1[batch_idx] | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
new_labels.append(labels[batch_idx]) | |
# kenang-mit@: we do not have placeholdr image for text-only data now. | |
# cur_image_idx += 1 | |
continue | |
cur_input_embeds = input_embeds_1[batch_idx] | |
image_token_indices = ( | |
[-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] | |
) | |
cur_input_ids_noim = [] | |
cur_labels = labels[batch_idx] | |
cur_labels_noim = [] | |
cur_input_embeds_no_im = [] | |
for i in range(len(image_token_indices) - 1): | |
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
cur_input_embeds_no_im.append(cur_input_embeds[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
split_sizes = [x.shape[0] for x in cur_labels_noim] | |
# cur_input_embeds = self.get_llm().embed_tokens(torch.cat(cur_input_ids_noim)) | |
# cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) | |
cur_new_input_embeds = [] | |
cur_new_labels = [] | |
for i in range(num_images + 1): | |
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) | |
cur_new_labels.append(cur_labels_noim[i]) | |
if i < num_images: | |
cur_image_features = image_features[cur_image_idx] | |
cur_image_idx += 1 | |
cur_new_input_embeds.append(cur_image_features) | |
cur_new_labels.append( | |
torch.full( | |
(cur_image_features.shape[0],), | |
IGNORE_INDEX, | |
device=cur_labels.device, | |
dtype=cur_labels.dtype, | |
) | |
) | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds) | |
cur_new_labels = torch.cat(cur_new_labels) | |
new_input_embeds.append(cur_new_input_embeds) | |
new_labels.append(cur_new_labels) | |
# Truncate sequences to max length as image embeddings can make the sequence longer | |
tokenizer_model_max_length = getattr(self.llm.config, "tokenizer_model_max_length", None) | |
if tokenizer_model_max_length is not None: | |
if any(len(x) > tokenizer_model_max_length for x in new_input_embeds): | |
warnings.warn("Inputs truncated!") | |
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] | |
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] | |
# Combine them | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
batch_size = len(new_input_embeds) | |
new_input_embeds_padded = [] | |
new_labels_padded = torch.full( | |
(batch_size, max_len), | |
IGNORE_INDEX, | |
dtype=new_labels[0].dtype, | |
device=new_labels[0].device, | |
) | |
attention_mask = torch.zeros( | |
(batch_size, max_len), | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
) | |
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) | |
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): | |
cur_len = cur_new_embed.shape[0] | |
if getattr(self.llm.config, "tokenizer_padding_side", "right") == "left": | |
new_input_embeds_padded.append( | |
torch.cat( | |
( | |
torch.zeros( | |
(max_len - cur_len, cur_new_embed.shape[1]), | |
dtype=cur_new_embed.dtype, | |
device=cur_new_embed.device, | |
), | |
cur_new_embed, | |
), | |
dim=0, | |
) | |
) | |
if cur_len > 0: | |
new_labels_padded[i, -cur_len:] = cur_new_labels | |
attention_mask[i, -cur_len:] = True | |
position_ids[i, -cur_len:] = torch.arange( | |
0, cur_len, dtype=position_ids.dtype, device=position_ids.device | |
) | |
else: | |
new_input_embeds_padded.append( | |
torch.cat( | |
( | |
cur_new_embed, | |
torch.zeros( | |
(max_len - cur_len, cur_new_embed.shape[1]), | |
dtype=cur_new_embed.dtype, | |
device=cur_new_embed.device, | |
), | |
), | |
dim=0, | |
) | |
) | |
if cur_len > 0: | |
new_labels_padded[i, :cur_len] = cur_new_labels | |
attention_mask[i, :cur_len] = True | |
position_ids[i, :cur_len] = torch.arange( | |
0, cur_len, dtype=position_ids.dtype, device=position_ids.device | |
) | |
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) | |
if _labels is None: | |
new_labels = None | |
else: | |
new_labels = new_labels_padded | |
if _attention_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) | |
if _position_ids is None: | |
position_ids = None | |
return ( | |
None, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
new_input_embeds, | |
new_labels, | |
) | |
def repack_multimodal_data( | |
self, | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
): | |
# kentang-mit@: reorder and repack (reduce computation overhead) | |
# requires transformers replacement. | |
new_inputs_embeds = [] | |
new_position_ids = [] | |
new_labels = [] | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
sorted_seqlens_in_batch, sorted_idx = torch.sort(seqlens_in_batch, descending=True) | |
# print(sorted_seqlens_in_batch) | |
max_seqlen = inputs_embeds.shape[1] | |
cur_inputs_embeds = [] | |
cur_position_ids = [] | |
cur_labels = [] | |
cur_batch_len = 0 | |
# print(sorted_seqlens_in_batch.device, len(sorted_seqlens_in_batch), max_seqlen) | |
for i in range(len(sorted_seqlens_in_batch)): | |
cur_seqlen = sorted_seqlens_in_batch[i].item() | |
if cur_seqlen + cur_batch_len <= max_seqlen: | |
cur_batch_len += cur_seqlen | |
# each item: num_tokens x num_channels | |
# remove padding on-the-fly | |
cur_inputs_embeds.append(inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]) | |
# each item: num_tokens | |
cur_position_ids.append( | |
torch.arange( | |
cur_inputs_embeds[-1].shape[0], | |
device=cur_inputs_embeds[-1].device, | |
) | |
) | |
# each item: num_tokens | |
# remove padding on-the-fly | |
cur_labels.append(labels[sorted_idx[i]][attention_mask[sorted_idx[i]]]) | |
else: | |
new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0)) | |
new_position_ids.append(torch.cat(cur_position_ids, 0)) | |
new_labels.append(torch.cat(cur_labels, 0)) | |
# The current batch is too long. We will start a new batch. | |
cur_batch_len = cur_seqlen | |
cur_inputs_embeds = [inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]] | |
cur_position_ids = [ | |
torch.arange( | |
cur_inputs_embeds[-1].shape[0], | |
device=cur_inputs_embeds[-1].device, | |
) | |
] | |
cur_labels = [labels[sorted_idx[i]][attention_mask[sorted_idx[i]]]] | |
if len(cur_inputs_embeds): | |
new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0)) | |
new_position_ids.append(torch.cat(cur_position_ids, 0)) | |
new_labels.append(torch.cat(cur_labels, 0)) | |
# print(new_position_ids[0].device, [x.shape for x in new_inputs_embeds], [x.shape for x in new_labels], [x.shape for x in new_position_ids]) | |
# assert 0 | |
new_inputs_embeds = torch.nn.utils.rnn.pad_sequence( | |
new_inputs_embeds, batch_first=True, padding_value=self.llm.pad_token_id | |
) | |
new_position_ids = torch.nn.utils.rnn.pad_sequence(new_position_ids, batch_first=True, padding_value=-1) | |
new_labels = torch.nn.utils.rnn.pad_sequence(new_labels, batch_first=True, padding_value=IGNORE_INDEX) | |
## yunhao: it's currently a workaround to avoid errors for seq_len < 100 | |
new_attention_mask = new_position_ids.ne(-1) | |
# sanity check | |
assert new_attention_mask.sum() == attention_mask.sum() | |
# print(new_inputs_embeds.shape, (new_attention_mask.sum(1))) | |
# print(sorted_seqlens_in_batch.device, sorted_seqlens_in_batch, new_attention_mask.sum(1)) | |
# return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels | |
return ( | |
None, | |
new_position_ids, | |
new_attention_mask, | |
past_key_values, | |
new_inputs_embeds, | |
new_labels, | |
sorted_seqlens_in_batch, | |
) | |
def initialize_vision_tokenizer(self, model_args, tokenizer): | |
if model_args.mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_im_start_end: | |
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
## TODO yunhao: handle cases for <im_st> <im_end> | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu") | |
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError( | |
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}." | |
) | |
elif model_args.mm_use_im_patch_token: | |
if model_args.mm_projector: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |