File size: 32,030 Bytes
e19aac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import os, sys, os.path as osp
import warnings
from abc import ABC, abstractmethod

import torch, logging

from transformers import (
    AutoTokenizer,
    AutoModel,
    AutoModelForCausalLM,
    AutoConfig,
    BitsAndBytesConfig,
    PretrainedConfig,
    PreTrainedModel,
)

from .constants import (
    DEFAULT_IM_END_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IMAGE_PATCH_TOKEN,
    IGNORE_INDEX,
    IMAGE_TOKEN_INDEX,
    MASK_TOKEN_INDEX,
)

from collections import OrderedDict
from .utils import get_model_config
from .language_model.builder import build_llm_and_tokenizer
from .multimodal_encoder.builder import build_vision_tower, build_context_provider
from .multimodal_projector.builder import build_mm_projector
from .configuration_llava import LlavaConfig

from transformers.modeling_utils import ContextManagers, no_init_weights

## TODO decide whether should we use metaclass
class LlavaMetaModel(ABC):
    def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs):
        # TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation.
        if hasattr(self, "llm") or hasattr(self, "vision_tower")  or hasattr(self, "mm_projector"):
            # already initialized, skipped
            return 
        
        model_dtype = getattr(config, "model_dtype", "torch.float16")
        if not hasattr(config, "model_dtype"):
            warnings.warn("model_dtype not found in config, defaulting to torch.float16.")
            config.model_dtype = model_dtype
        
        # print("init_vlm(): config", config); input("DEBUG init_vlm")
        cfgs = get_model_config(config)
        # Only the first three are required. Others are optional.
        llm_cfg, vision_tower_cfg, mm_projector_cfg, mask_encoder_cfg, context_provider_cfg = cfgs
        if llm_cfg is None or vision_tower_cfg is None or mm_projector_cfg is None:
            raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.")
        # print("init_vlm():", cfgs); input("DEBUG init_vlm")
        # print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG init_vlm")
        self.llm, self.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs)
        self.vision_tower = build_vision_tower(vision_tower_cfg, config)
        self.mm_projector = build_mm_projector(mm_projector_cfg, config)
        self.context_provider = build_context_provider(context_provider_cfg, config) if context_provider_cfg is not None else None

        self.post_config()
        self.is_loaded = True

        assert (
            self.llm is not None or self.vision_tower is not None or self.mm_projector is not None
        ), "At least one of the components must be instantiated."
    
    @classmethod
    def load_from_config(cls, model_path_or_config, *args, **kwargs):
        pass
    
    ## FIXME we will use this function to load model in the future
    @classmethod
    def load_pretrained(cls, model_path_or_config, *args, **kwargs):
        kwargs.pop("config", None)

        if isinstance(model_path_or_config, str):
            config = AutoConfig.from_pretrained(model_path_or_config)
        elif isinstance(model_path_or_config, LlavaConfig):
            config = model_path_or_config
        else:
            raise NotImplementedError(f"wrong type, {type(model_path_or_config)} \
                                      {isinstance(model_path_or_config, LlavaConfig)}")

        model_dtype = getattr(config, "model_dtype", "torch.float16")
        if not hasattr(config, "model_dtype"):
            warnings.warn("model_dtype not found in config, defaulting to torch.float16.")
            config.model_dtype = model_dtype
        
        cfgs = get_model_config(config)
        # Only the first three are required. Others are optional.
        llm_cfg, vision_tower_cfg, mm_projector_cfg, mask_encoder_cfg, context_provider_cfg = cfgs
        if llm_cfg is None or vision_tower_cfg is None or mm_projector_cfg is None:
            raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.")

        # print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained")
        with ContextManagers([no_init_weights(_enable=True),]):
            vlm = cls(config, *args, **kwargs)
        # print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained finish")
        
        if hasattr(vlm, "llm") or hasattr(vlm, "vision_tower")  or hasattr(vlm, "mm_projector"):
            if vlm.is_loaded:
                return vlm
        
        vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs)
        vlm.vision_tower = build_vision_tower(vision_tower_cfg, config)
        vlm.mm_projector = build_mm_projector(mm_projector_cfg, config)
        if mask_encoder_cfg is not None:
            raise NotImplementedError("Mask encoder is not supported.")
        vlm.context_provider = build_context_provider(context_provider_cfg, config) if context_provider_cfg is not None else None

        self.post_config()
        self.is_loaded = True

        # FIXME(ligeng, yunhao): llm should never be none here.
        assert (
            vlm.llm is not None or vlm.vision_tower is not None or vlm.mm_projector is not None
        ), "At least one of the components must be instantiated."
        return vlm
    
    ## FIXME we will use this function to save the model in the future
    def save_pretrained(self, output_dir, state_dict=None):
        if state_dict is None:
            # other wise fetch from deepspeed
            # state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
            state_dict = self.state_dict()
        
        if getattr(self, "tokenizer", None):
            self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))

        if self.get_llm():
            print(f"saving llm to {osp.join(output_dir, 'llm')}")
            self.llm.config._name_or_path = osp.join(output_dir, "llm")
            llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k})
            self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict)
            self.config.llm_cfg = self.llm.config

        if self.get_vision_tower() and "radio" not in self.get_vision_tower().__class__.__name__.lower():
            print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
            self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower")
            vision_tower_state_dict = OrderedDict(
                {k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k}
            )
            self.vision_tower.vision_tower.save_pretrained(
                os.path.join(output_dir, "vision_tower"),
                state_dict=vision_tower_state_dict,
            )
            self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower"))
            self.config.vision_tower_cfg = self.vision_tower.config
            if hasattr(self.config.vision_tower_cfg, 'auto_map'):
                delattr(self.config.vision_tower_cfg, 'auto_map')

        if self.get_mm_projector():
            print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
            self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector")
            mm_projector_state_dict = OrderedDict(
                {k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k}
            )
            self.mm_projector.save_pretrained(
                os.path.join(output_dir, "mm_projector"),
                state_dict=mm_projector_state_dict,
            )
            self.config.mm_projector_cfg = self.mm_projector.config

        if self.get_context_provider():
            print(f"saving context_provider to {osp.join(output_dir, 'context_provider')}")
            self.context_provider.config._name_or_path = osp.join(output_dir, "context_provider")
            context_provider_state_dict = OrderedDict(
                {k.split("context_provider.")[-1]: v for k, v in state_dict.items() if "context_provider" in k}
            )
            self.context_provider.save_pretrained(
                os.path.join(output_dir, "context_provider"),
                state_dict=context_provider_state_dict,
            )
            self.config.context_provider_cfg = self.context_provider.config
        
        ## update and save top-level config
        self.config._name_or_path = output_dir
        self.config.architectures = [self.__class__.__name__]
        self.config.save_pretrained(output_dir)
   

    def get_llm(self):
        llm = getattr(self, "llm", None)
        if type(llm) is list:
            llm = llm[0]
        return llm

    def get_lm_head(self):
        lm_head = getattr(self.get_llm(), "lm_head", None)
        return lm_head

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def get_mm_projector(self):
        mm_projector = getattr(self, "mm_projector", None)
        if type(mm_projector) is list:
            mm_projector = mm_projector[0]
        return mm_projector

    def get_context_provider(self):
        context_provider = getattr(self, "context_provider", None)
        return context_provider

    def post_config(self):
        self.training = self.get_llm().training
        ## configuration
        if getattr(self.config, "llm_cfg", None) is None:
            self.config.llm_cfg = self.llm.config
        if getattr(self.config, "vision_tower_cfg", None) is None:
            self.config.vision_tower_cfg = self.vision_tower.config
        if getattr(self.config, "mm_projector_cfg", None) is None:
            self.config.mm_projector_cfg = self.mm_projector.config
        if getattr(self.config, "context_provider_cfg", None) is None and self.context_provider is not None:
            self.config.context_provider_cfg = self.context_provider.config

    def freezed_module_patch(self):
        '''
        Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
        '''
        if self.training:
            if self.get_llm() and not getattr(self.config, "tune_language_model", False):
                logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
            if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False):
                self.get_vision_tower().eval()
            if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False):
                self.get_mm_projector().eval()
            if self.get_context_provider() and not getattr(self.config, "tune_context_provider", False):
                self.get_context_provider().eval()

    def encode_images(self, images):
        image_features = self.get_vision_tower()(images)
        image_features = self.get_mm_projector()(image_features)
        return image_features

    def encode_images_with_context(self, images):
        context_provider = self.get_context_provider()
        # If the channels completely match, they are cimage (image with context).
        cimage_mask = torch.any((images[:, :4, ...] != images[:, 4:, ...]).flatten(start_dim=1), dim=1)
        
        if context_provider.treat_image_as_cimage:
            # If the context provider treats the image as cimage, then all images are cimage.
            cimage_mask[:] = True

        if context_provider.context_image_as_queries:
            # Swap the crop image and full image since the model uses the full image as queries by default
            images = torch.cat((images[:, 4:, ...], images[:, :4, ...]), dim=1)

        # Process the first 4 channels for all images: for image it's the image, for cimage it's the full image
        vision_tower = self.get_vision_tower()
        # Encode context images (full images)
        image_features = vision_tower(images[:, :4, ...]).to(self.device)
        # Each cimage has 8 channels (full and crop concatenated)
        cimage_concatenated = images[cimage_mask]
        cimage_full_features = image_features[cimage_mask]
        if context_provider.context_provider_type == "cross_attn_end_to_all":
            cimage_features = self.context_provider(
                cimage_full_features=cimage_full_features, 
                cimage_concatenated=cimage_concatenated,
                vision_tower=vision_tower
            ).to(self.device)
        elif context_provider.context_provider_type == "concat":
            # Full features of cimages are computed but not used.
            cimage_features = self.context_provider(
                cimage_concatenated=cimage_concatenated,
                vision_tower=vision_tower
            ).to(self.device)
        else:
            raise NotImplementedError(f"Context provider type {context_provider.context_provider_type} not implemented.")
        # Put cimage_features into image_features
        image_features[cimage_mask] = cimage_features

        # Project to the llm space
        image_features = self.get_mm_projector()(image_features)

        return image_features

    ## @yunhao: is there a better way to handle function call and attributes for llm?
    ## support beam search
    def _temporary_reorder_cache(self, past_key_values, sorted_idx):
        return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx)

    def get_input_embeddings(self):
        return self.get_llm().get_input_embeddings()

    def get_output_embeddings(self):
        return self.get_llm().get_output_embeddings()

    def resize_token_embeddings(self, embed_size):
        self.get_llm().resize_token_embeddings(embed_size)

    

class LlavaMetaForCausalLM(ABC):
    """This class is originally implemented by the LLaVA team and
    modified by Haotian Tang and Jason Lu based on Ji Lin's implementation
    to support multiple images and input packing."""

    ## TODO move the forward function here if there is no need to override it
    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels, images
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if (
                past_key_values is not None
                and vision_tower is not None
                and images is not None
                and input_ids.shape[1] == 1
            ):
                target_shape = past_key_values[-1][-1].shape[-2] + 1
                attention_mask = torch.cat(
                    (
                        attention_mask,
                        torch.ones(
                            (
                                attention_mask.shape[0],
                                target_shape - attention_mask.shape[1],
                            ),
                            dtype=attention_mask.dtype,
                            device=attention_mask.device,
                        ),
                    ),
                    dim=1,
                )
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
            return (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                None,
                labels,
            )
        # handle different image dtypes for packing
        if type(images) is list:
            images = torch.cat(images, dim=0)
        elif images.ndim == 5:  # batch_size x seq_len x image_channels
            images = images.flatten(0, 1)
        if getattr(self, "context_provider", None):
            image_features = self.encode_images_with_context(images)
        else:
            # Since we slice it with index below, turning it into a list splits things by the first index which does not result in data copy or degrade performance.
            # Example dimension: [1, 196, 2560]
            assert images.shape[1] <= 4, f"images have more than 4 channels, but context provider is not included"
            image_features = self.encode_images(images).to(self.device)
        # Note (kentang-mit@): image start / end is not implemented here to support pretraining.
        if getattr(self.config, "turn_mm_projector", False) and getattr(self.config, "mm_use_im_start_end", False):
            raise NotImplementedError

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask
        input_ids_copy = input_ids.clone()
        # kentang-mit@: Otherwise tokenizer out of bounds. Embeddings of image tokens will not be used.
        input_ids_copy[input_ids_copy == IMAGE_TOKEN_INDEX] = 0
        input_embeds = self.llm.model.embed_tokens(input_ids_copy)

        input_ids = [
            cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
        ]
        input_embeds_1 = [
            cur_input_embeds[cur_attention_mask]
            for cur_input_embeds, cur_attention_mask in zip(input_embeds, attention_mask)
        ]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0

        # print("BEFORE BATCH LOOP:", len(input_ids), input_ids[0].shape, input_ids[0].device, [(x == IMAGE_TOKEN_INDEX).sum() for x in input_ids])

        # kentang-mit@: If some part of the model is executed in the loop, the the loop length needs to be a constant.
        for batch_idx, cur_input_ids in enumerate(input_ids):
            cur_input_ids = input_ids[batch_idx]
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = image_features[0]
                # cur_input_embeds_1 = self.get_llm().embed_tokens(cur_input_ids)
                cur_input_embeds_1 = input_embeds_1[batch_idx]
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                # kenang-mit@: we do not have placeholdr image for text-only data now.
                # cur_image_idx += 1
                continue

            cur_input_embeds = input_embeds_1[batch_idx]
            image_token_indices = (
                [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            )
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            cur_input_embeds_no_im = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
                cur_input_embeds_no_im.append(cur_input_embeds[image_token_indices[i] + 1 : image_token_indices[i + 1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            # cur_input_embeds = self.get_llm().embed_tokens(torch.cat(cur_input_ids_noim))
            # cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []
            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(
                        torch.full(
                            (cur_image_features.shape[0],),
                            IGNORE_INDEX,
                            device=cur_labels.device,
                            dtype=cur_labels.dtype,
                        )
                    )

            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.llm.config, "tokenizer_model_max_length", None)
        if tokenizer_model_max_length is not None:
            if any(len(x) > tokenizer_model_max_length for x in new_input_embeds):
                warnings.warn("Inputs truncated!")
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full(
            (batch_size, max_len),
            IGNORE_INDEX,
            dtype=new_labels[0].dtype,
            device=new_labels[0].device,
        )
        attention_mask = torch.zeros(
            (batch_size, max_len),
            dtype=attention_mask.dtype,
            device=attention_mask.device,
        )
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.llm.config, "tokenizer_padding_side", "right") == "left":
                new_input_embeds_padded.append(
                    torch.cat(
                        (
                            torch.zeros(
                                (max_len - cur_len, cur_new_embed.shape[1]),
                                dtype=cur_new_embed.dtype,
                                device=cur_new_embed.device,
                            ),
                            cur_new_embed,
                        ),
                        dim=0,
                    )
                )
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(
                        0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                    )
            else:
                new_input_embeds_padded.append(
                    torch.cat(
                        (
                            cur_new_embed,
                            torch.zeros(
                                (max_len - cur_len, cur_new_embed.shape[1]),
                                dtype=cur_new_embed.dtype,
                                device=cur_new_embed.device,
                            ),
                        ),
                        dim=0,
                    )
                )
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(
                        0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                    )

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return (
            None,
            position_ids,
            attention_mask,
            past_key_values,
            new_input_embeds,
            new_labels,
        )

    def repack_multimodal_data(
        self,
        input_ids,
        position_ids,
        attention_mask,
        past_key_values,
        inputs_embeds,
        labels,
    ):
        # kentang-mit@: reorder and repack (reduce computation overhead)
        # requires transformers replacement.
        new_inputs_embeds = []
        new_position_ids = []
        new_labels = []
        seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
        sorted_seqlens_in_batch, sorted_idx = torch.sort(seqlens_in_batch, descending=True)
        # print(sorted_seqlens_in_batch)
        max_seqlen = inputs_embeds.shape[1]

        cur_inputs_embeds = []
        cur_position_ids = []
        cur_labels = []
        cur_batch_len = 0
        # print(sorted_seqlens_in_batch.device, len(sorted_seqlens_in_batch), max_seqlen)
        for i in range(len(sorted_seqlens_in_batch)):
            cur_seqlen = sorted_seqlens_in_batch[i].item()
            if cur_seqlen + cur_batch_len <= max_seqlen:
                cur_batch_len += cur_seqlen
                # each item: num_tokens x num_channels
                # remove padding on-the-fly
                cur_inputs_embeds.append(inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]])
                # each item: num_tokens
                cur_position_ids.append(
                    torch.arange(
                        cur_inputs_embeds[-1].shape[0],
                        device=cur_inputs_embeds[-1].device,
                    )
                )
                # each item: num_tokens
                # remove padding on-the-fly
                cur_labels.append(labels[sorted_idx[i]][attention_mask[sorted_idx[i]]])
            else:
                new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0))
                new_position_ids.append(torch.cat(cur_position_ids, 0))
                new_labels.append(torch.cat(cur_labels, 0))
                # The current batch is too long. We will start a new batch.
                cur_batch_len = cur_seqlen
                cur_inputs_embeds = [inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]]
                cur_position_ids = [
                    torch.arange(
                        cur_inputs_embeds[-1].shape[0],
                        device=cur_inputs_embeds[-1].device,
                    )
                ]
                cur_labels = [labels[sorted_idx[i]][attention_mask[sorted_idx[i]]]]

        if len(cur_inputs_embeds):
            new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0))
            new_position_ids.append(torch.cat(cur_position_ids, 0))
            new_labels.append(torch.cat(cur_labels, 0))

        # print(new_position_ids[0].device, [x.shape for x in new_inputs_embeds], [x.shape for x in new_labels], [x.shape for x in new_position_ids])
        # assert 0
        new_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
            new_inputs_embeds, batch_first=True, padding_value=self.llm.pad_token_id
        )

        new_position_ids = torch.nn.utils.rnn.pad_sequence(new_position_ids, batch_first=True, padding_value=-1)

        new_labels = torch.nn.utils.rnn.pad_sequence(new_labels, batch_first=True, padding_value=IGNORE_INDEX)
        ## yunhao: it's currently a workaround to avoid errors for seq_len < 100
        new_attention_mask = new_position_ids.ne(-1)
        # sanity check
        assert new_attention_mask.sum() == attention_mask.sum()
        # print(new_inputs_embeds.shape, (new_attention_mask.sum(1)))
        # print(sorted_seqlens_in_batch.device, sorted_seqlens_in_batch, new_attention_mask.sum(1))

        # return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
        return (
            None,
            new_position_ids,
            new_attention_mask,
            past_key_values,
            new_inputs_embeds,
            new_labels,
            sorted_seqlens_in_batch,
        )

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg
            ## TODO yunhao: handle cases for <im_st> <im_end>
            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu")
                embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(
                        f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
                    )
        elif model_args.mm_use_im_patch_token:
            if model_args.mm_projector:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False