Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
PAD_TOKEN_ID = 0 | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from transformers import AutoConfig, AutoModelForCausalLM | |
from transformers.models.gemma import GemmaConfig, GemmaModel, GemmaForCausalLM | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from llava.constants import IGNORE_INDEX | |
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | |
# import time | |
class LlavaGemmaConfig(GemmaConfig): | |
model_type = "llava_gemma" | |
class LlavaGemmaModel(GemmaModel, LlavaMetaModel): | |
config_class = LlavaGemmaConfig | |
def __init__(self, config: GemmaConfig): | |
super(LlavaGemmaModel, self).__init__(config) | |
class LlavaGemmaForCausalLM(GemmaForCausalLM, LlavaMetaForCausalLM): | |
config_class = LlavaGemmaConfig | |
def __init__(self, config): | |
super(LlavaGemmaForCausalLM, self).__init__(config) | |
self.model = LlavaGemmaModel(config) | |
self.pretraining_tp = 1 | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def get_lm_head(self): | |
return self.lm_head | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if inputs_embeds is None: | |
( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
labels, | |
images | |
) | |
# TODO (kentang-mit@): fuse this function into the previous one. | |
# current design makes unit-test easier. | |
if self.training: | |
( | |
_, | |
new_position_ids, | |
new_attention_mask, | |
_, | |
new_inputs_embeds, | |
new_labels, | |
sorted_seqlens_in_batch | |
) = self.repack_multimodal_data( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels | |
) | |
new_input_ids = None | |
past_key_values = None | |
new_cache_position = None | |
else: | |
new_attention_mask = attention_mask | |
new_position_ids = position_ids | |
new_inputs_embeds = inputs_embeds | |
new_labels = labels | |
if attention_mask is not None: | |
sorted_seqlens_in_batch = attention_mask.sum(-1).int() | |
else: | |
sorted_seqlens_in_batch = None | |
new_input_ids = input_ids | |
# kentang-mit@: This only works for batch=1 currently | |
# model.generate of gemma does not correctly handle decoding stage currently | |
# need to manually adjust decoding stage input = 1 token | |
if past_key_values is not None: | |
if new_inputs_embeds is not None: | |
new_inputs_embeds = new_inputs_embeds[:, [-1]] | |
# kentang-mit@: seems to be a problem unique to gemma | |
if new_position_ids is not None: | |
new_position_ids = new_position_ids[:, [-1]] | |
new_cache_position = new_position_ids[0] | |
outputs = super().forward( | |
input_ids=new_input_ids, | |
attention_mask=new_attention_mask, | |
position_ids=new_position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=new_inputs_embeds, | |
labels=new_labels, | |
use_cache=use_cache, | |
cache_position=new_cache_position, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
seqlens_in_batch=sorted_seqlens_in_batch, | |
) | |
return outputs | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
images = kwargs.pop("images", None) | |
_inputs = super().prepare_inputs_for_generation( | |
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs | |
) | |
if images is not None: | |
_inputs['images'] = images | |
return _inputs | |
AutoConfig.register("llava_gemma", LlavaGemmaConfig) | |
AutoModelForCausalLM.register(LlavaGemmaConfig, LlavaGemmaForCausalLM) | |