File size: 5,927 Bytes
e19aac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

PAD_TOKEN_ID = 0

from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from transformers import AutoConfig, AutoModelForCausalLM
from transformers.models.gemma import GemmaConfig, GemmaModel, GemmaForCausalLM

from transformers.modeling_outputs import CausalLMOutputWithPast
from llava.constants import IGNORE_INDEX
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
# import time


class LlavaGemmaConfig(GemmaConfig):
    model_type = "llava_gemma"


class LlavaGemmaModel(GemmaModel, LlavaMetaModel):
    config_class = LlavaGemmaConfig

    def __init__(self, config: GemmaConfig):
        super(LlavaGemmaModel, self).__init__(config)


class LlavaGemmaForCausalLM(GemmaForCausalLM, LlavaMetaForCausalLM):
    config_class = LlavaGemmaConfig

    def __init__(self, config):
        super(LlavaGemmaForCausalLM, self).__init__(config)
        self.model = LlavaGemmaModel(config)
        self.pretraining_tp = 1
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model
    
    def get_lm_head(self):
        return self.lm_head

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images
            )
        # TODO (kentang-mit@): fuse this function into the previous one.
        # current design makes unit-test easier.
        if self.training:
            (
                _,
                new_position_ids,
                new_attention_mask,
                _,
                new_inputs_embeds,
                new_labels,
                sorted_seqlens_in_batch
            ) = self.repack_multimodal_data(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            )
            new_input_ids = None
            past_key_values = None
            new_cache_position = None
        else:
            new_attention_mask = attention_mask
            new_position_ids = position_ids
            new_inputs_embeds = inputs_embeds
            new_labels = labels
            if attention_mask is not None:
                sorted_seqlens_in_batch = attention_mask.sum(-1).int()
            else:
                sorted_seqlens_in_batch = None
            new_input_ids = input_ids
            # kentang-mit@: This only works for batch=1 currently
            # model.generate of gemma does not correctly handle decoding stage currently
            # need to manually adjust decoding stage input = 1 token
            if past_key_values is not None:
                if new_inputs_embeds is not None:
                    new_inputs_embeds = new_inputs_embeds[:, [-1]]
                # kentang-mit@: seems to be a problem unique to gemma
                if new_position_ids is not None:
                    new_position_ids = new_position_ids[:, [-1]]
            new_cache_position = new_position_ids[0]

        outputs = super().forward(
            input_ids=new_input_ids,
            attention_mask=new_attention_mask,
            position_ids=new_position_ids,
            past_key_values=past_key_values,
            inputs_embeds=new_inputs_embeds,
            labels=new_labels,
            use_cache=use_cache,
            cache_position=new_cache_position,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            seqlens_in_batch=sorted_seqlens_in_batch,
        )
        return outputs

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        _inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            _inputs['images'] = images
        return _inputs

AutoConfig.register("llava_gemma", LlavaGemmaConfig)
AutoModelForCausalLM.register(LlavaGemmaConfig, LlavaGemmaForCausalLM)