File size: 7,428 Bytes
e1e9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b554c68
e1e9610
 
 
b554c68
2d77268
75d385f
adc9b1f
b554c68
 
adc9b1f
f16cc1f
e1e9610
f16cc1f
 
 
e1e9610
 
 
 
 
 
9348312
 
 
 
 
e1e9610
9348312
e1e9610
 
 
9348312
e1e9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import streamlit as st
from cryptography.fernet import Fernet
import time
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import json

import nltk

import plotly.express as px
from PyPDF2 import PdfReader
import docx
import zipfile

from gliner import GLiNER



st.subheader("Named Entity Recognition (NER)", divider="red")

# generate Fernet key
if 'fernet_key' not in st.session_state:
    st.session_state.fernet_key = Fernet.generate_key()

key = st.session_state.fernet_key


# function for generating and validating fernet key
def generate_fernet_token(key, data):
    fernet = Fernet(key)
    token = fernet.encrypt(data.encode())
    return token

def validate_fernet_token(key, token, ttl_seconds):
    
    fernet = Fernet(key)
    try:
        decrypted_data = fernet.decrypt(token, ttl=ttl_seconds).decode()
        return decrypted_data, None
    except Exception as e:
        return None, f"Expired token: {e}"


# sidebar   
with st.sidebar:
    with stylable_container(
        key="test_button",
        css_styles="""
        button {
            background-color: yellow;
            border: 1px solid black;
            padding: 5px;
            color: black;
        }
        """,
    ):
        st.button("DEMO APP")
   

    expander = st.expander("**Important notes on the Demo Named Entity Recognition (NER) App**")
    expander.write('''
    
    **Supported File Formats**
    This app accepts files in .pdf and .docx formats.
    
    **How to Use**
    Upload your file first. Then, click the 'Results' button.
    
    **Usage Limits**
    You can request results up to 5 times. 
    
     **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own Named Entity Recognition (NER) Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Authorization**
    For security purposes, your authorization access expires hourly. To restore access, click the "Request Authorization" button. 
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors**
    The app may display an error message if your file is corrupt, or has other errors.
    
    
    For any errors or inquiries, please contact us at [email protected]
    
''')
    
    
       
# count attempts based on file upload
if 'file_upload_attempts' not in st.session_state:
    st.session_state['file_upload_attempts'] = 0

max_attempts = 5

# upload file
upload_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
text = None
df = None

if upload_file is not None:
    
    file_extension = upload_file.name.split('.')[-1].lower()
    if file_extension == 'pdf':
        try:
            pdf_reader = PdfReader(upload_file)
            text = ""
            for page in pdf_reader.pages:
                text += page.extract_text()
            st.write(text)
        except Exception as e:
            st.error(f"An error occurred while reading PDF: {e}")
    elif file_extension == 'docx':
        try:
            doc = docx.Document(upload_file)
            text = "\n".join([para.text for para in doc.paragraphs])
            st.write(text)
        except Exception as e:
            st.error(f"An error occurred while reading docx: {e}")
    else:
        st.warning("Unsupported file type.")
    
        st.stop()


        

# generate and validate Fernet token for the current file
if 'fernet_token' not in st.session_state:
    if text is not None:
        st.session_state.fernet_token = generate_fernet_token(key, text)
    else:
        st.stop()

decrypted_data_streamlit, error_streamlit = validate_fernet_token(key, st.session_state.fernet_token, ttl_seconds=3600)

if error_streamlit:
    if text is not None:
        st.warning("Please press Request Authorization.")
        if st.button("Request Authorization"):
            st.session_state.fernet_token = generate_fernet_token(key, text)
            st.success("Authorization granted")
            decrypted_data_streamlit, error_streamlit = validate_fernet_token(key, st.session_state.fernet_token, ttl_seconds=3600)
        if error_streamlit:
            st.error(f"Your authorization has expired: {error_streamlit}")
            st.stop()
        

st.divider()



#retrieve answer
if st.button("Results"):
    if st.session_state['file_upload_attempts'] >= max_attempts:
        st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
        st.stop()
    st.session_state['file_upload_attempts'] += 1
    if error_streamlit:
        st.warning("Please upload a file before retrieving the results.")
    else:
        with st.spinner('Wait for it...'):
            time.sleep(2)
            model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
            labels = ["person", "location", "country", "city", "organization", "time", "date", "product", "event name", "money", "affiliation", "ordinal value", "percent value", "position"]
            entities = model.predict_entities(text, labels)
            df = pd.DataFrame(entities)
            
            properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
            df_styled = df.style.set_properties(**properties)
            st.dataframe(df_styled)
            if df is not None:
                fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig)


            
                
            

            dfa = pd.DataFrame(
                data={
                    
                    'text': ['entity extracted from file'], 'score': ['accuracy score'], 'label': ['label assigned to the extracted entity'],
                    'start': ['index of the start of the corresponding entity'],
                    'end': ['index of the end of the corresponding entity'],
                })
        
            buf = io.BytesIO()
            with zipfile.ZipFile(buf, "w") as myzip:
                myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
                myzip.writestr("Glossary of labels.csv", dfa.to_csv(index=False))
                    
            with stylable_container(
                key="download_button",
                css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
            ):
                st.download_button(
                        label="Download zip file",
                        data=buf.getvalue(),
                        file_name="zip file.zip",
                        mime="application/zip",
                )
                    





            


st.divider()
st.write(f"Number of times you requested results: {st.session_state['file_upload_attempts']}/{max_attempts}")